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A CENSUS OF CUBIC FOURFOLDS OVER F2

ASHER AUEL, AVINASH KULKARNI, JACK PETOK, AND JONAH WEINBAUM

Abstract. We compute a complete set of isomorphism classes of cubic four-

folds over F2. Using this, we are able to compile statistics about various invari-
ants of cubic fourfolds, including their counts of points, lines, and planes; all
zeta functions of the smooth cubic fourfolds over F2; and their Newton poly-
gons. One particular outcome is the number of smooth cubic fourfolds over
F2, which we fit into the asymptotic framework of discriminant complements.
Another motivation is the realization problem for zeta functions of K3 sur-
faces. We present a refinement to the standard method of orbit enumeration
that leverages filtrations and gives a significant speedup. In the case of cubic
fourfolds, the relevant filtration is determined by Waring representation and
the method brings the problem into the computationally tractable range.

Introduction

The study of cubic fourfolds over finite fields (e.g., [1], [2], [11], [14], etc.) has
grown as a respectable side industry to the main threads of investigation for cu-
bic fourfolds over the complex numbers, including the rationality problem and its
connections to derived categories, algebraic cycles, K3 surfaces, and hyperkähler
varieties. In this paper and its accompanying code [4], we generate a database of
all cubic fourfolds over F2 up to isomorphism. We also compute many of their most
important invariants, including their automorphism groups, their point counts, and
information about their algebraic cycles. In particular, we can report the following.

Theorem 1. Of the 3 718 649 isomorphism classes of cubic fourfolds over F2, ex-
actly 1 069 562 are smooth, of which 533 262 are ordinary, 8688 are supersingular,
107 552 are Noether–Lefschetz general, and 702 153 contain a plane. The smooth
cubic fourfolds admit 86 472 distinct zeta functions.

The algorithmic methods to generate our database of cubic fourfolds are of in-
dependent interest: we present a new technique for enumerating a complete set of
orbit representatives of a finite group G acting linearly on a high-dimensional vector
space V over a finite field that leverages G-stable filtrations of V . In the case of
cubic fourfolds over F2, the relevant action is the representation of G = GL6(F2) on
the 56-dimensional F2-vector space V = Sym3(F6

2) of homogeneous cubic forms in
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six variables. In certain situations, our method provides a substantial speedup over
naive orbit partition algorithms. The advantage of our method, assuming the exis-
tence of good G-stable filtrations, is that we do not need to iterate through every
element of V . A complexity analysis in §1.2 shows that under favorable situations
our method is linear in the number of orbits, which is asymptotically optimal; in
the case of cubic fourfolds over F2, our method gives a roughly square-root speedup.

Our work on cubic fourfolds was partially inspired by Kedlaya and Sutherland’s
census [33] of quartic K3 surfaces over F2. There, a complete partition of quartic
surfaces into GL4(F2)-orbits was achieved in a few days on a powerful computer;
with our method, it takes 3 minutes on a laptop to compute a complete set of
orbit representatives. They also compute the zeta functions of the smooth orbits,
as well as a longer list of potential zeta functions of K3 surfaces over F2. This
is achieved by enumerating the candidate Weil polynomials on the middle �-adic
cohomology [33, Computation 3(c)]. Kedlaya and Sutherland pose the following.

Problem 1. Determine the set of zeta functions of K3 surfaces defined over F2.

We remark that the Tate conjecture for K3 surfaces (proved by [42], [9], [10],
[39], [34], [40], [32]) implies that there are finitely many isomorphism classes of K3
surfaces defined over a fixed finite field by the work of Lieblich, Maulik, and Snow-
den [38], which holds in any characteristic. A resolution of Problem 1 would provide
a kind of Honda–Tate theory for K3 surfaces. The work of Taelman [47] implies
that the transcendental part of every Weil polynomial in [33, Computation 3(c)]
is expected to arise from some K3 surface defined over a suitable extension of the
base field, but we are interested in which zeta functions arise from K3 surfaces
over F2.

Over the complex numbers, cubic fourfolds are Fano varieties of K3 type, with
the Hodge structures on their middle cohomology resembling those of K3 surfaces.
Hassett [25] classified those cubic fourfolds that admit Hodge-theoretically associ-
ated K3 surfaces, namely the admissible special cubic fourfolds. Over a finite field,
the Weil polynomial on the middle dimensional �-adic cohomology of a special cubic
fourfold has a factor (the nonspecial Weil polynomial) that looks like the Weil poly-
nomial of a K3 surface, and we would expect this polynomial to be realizable by a
K3 surface defined over F2 whenever a Hodge-theoretically associated K3 surface
is defined over F2. Thus our computation of the zeta functions of cubic fourfolds
(see §4) provides many new Weil polynomials that should arise from K3 surfaces,
and fertile ground for the arithmetic study of the associated K3 surface. In cases
where there is an explicit algebraic construction of an associated K3 surface, for
example, for cubic fourfolds containing a plane, the nonspecial Weil polynomial of
the cubic is the primitive Weil polynomial of some K3 surface over F2. On the other
hand, our census exhibits many explicit special cubic fourfolds that cannot have
an associated K3 surface because such a K3 would have “negative point counts” as
well as certain special cubic fourfolds that are not expected to have associated K3
surfaces over F2, yet whose nonspecial Weil polynomial is still contained on Kedlaya
and Sutherland’s list, raising further questions about associated K3 surfaces over
finite fields (see the forthcoming work of the first and third authors [3]). Future
census projects could help further populate the list of Weil polynomials that are
realized by K3 surfaces over F2.

Finally, as stated in Theorem 1, our census also provides a count of the F2-points
of the complement of the generic discriminant of cubic forms in six variables. From
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this, we find that the probability that a random cubic fourfold is smooth is about
29%, and we connect this to asymptotic results of Poonen [44], Church–Ellenberg–
Farb [12], Vakil–Wood [49], and Howe [29] in algebraic geometry, number theory,
and topology.

This article is organized as follows. In §1, we present our new method for com-
puting orbit representatives for a finite group G acting on a finite vector space V
admitting a filtration by G-stable subspaces, which we coin the “filtration method.”
We also compare the computational complexity of our method compared with that
of more traditional methods. In §2, we describe the range of applicability of the fil-
tration method to enumerating degree d hypersurfaces in Pn over Fq, including the
case of cubic fourfolds over F2. Finally, in §3 and §4, we compute many invariants
associated to cubic fourfold, including their counts of points, lines, and planes, their
automorphism groups, and their zeta functions. We also discuss many connections
and complements to the existing literature.

1. Orbits via filtrations

Let k be a finite field and V be a finite-dimensional k-vector space on which a
finite group G acts linearly and faithfully. For v ∈ V we denote by G.v the G-orbit
containing v, and by Gv the stabilizer subgroup of v. If we are only interested in
the cardinality of the orbit set V/G, then we can use the orbit counting formula
(sometimes called “Burnside’s Lemma” or the “Cauchy–Frobenius Lemma”)

(1) |V/G| = 1

|G|
∑
g∈G

|V g| = |C|
|G|

∑
c∈C

|E1(c)|,

where C is the set of conjugacy classes in G and E1(c) is the 1-eigenspace of a
representative of c ∈ C, whose cardinality does not depend on the representative.

However, to assemble a list of orbit representatives, one has to work harder.
To do this, one typically runs a naive orbit partition algorithm, sometimes called
union-find (see §1.2 for more details), to sort each element of V into orbits under
G, as is done for quartic surfaces over F2 in [33]. Alternatively, one could develop
a sufficiently good G-invariant hash function on V and try randomly sampling
elements of V until one finds elements in all the orbits. The random sampling
method will often succeed in identifying elements in all large orbits after sampling
O
(
|V/G| log(|V/G|)

)
elements, but it can fail to find elements in small orbits in

reasonable time. This method has been used successfully by Costa, Harvey, and
Kedlaya (as reported by Costa [13]) to give a census of quartic K3 surfaces over F3

and was used by Halleck-Dubé [24] to enumerate a set of orbit representatives for
99.9% of the cubic fourfolds over F2.

However, working directly on V may prove to be too costly (as in the case of
cubic fourfolds over F2), and we introduce a method that can avoid this.

1.1. Filtration method. Suppose that there is a filtration of the G-module V

0 = W0 ⊂ · · · ⊂ W� ⊂ V

by G-submodules Wi ⊂ V , such that enumerating G-orbits in all of the associated
graded pieces Wi+1/Wi becomes a feasible task. Then using such a filtration, we
are able to compute a full set of G-orbit representatives for V by chasing lifts of
G-orbits of V/W� up the successive quotients

V → V/W1 → · · · → V/W�.
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Let us illustrate the method with a single-step filtration

0 ⊂ W ⊂ V

and consider U = V/W with G-equivariant quotient map π : V → U . We first note
that every G-orbit G.v in V/G maps to a G-orbit G.π(v) in U/G. This lets us write
the orbit set V/G as a disjoint union

(2) V/G =
⊔

O∈U/G

π−1(O)/G

over the orbits O ∈ U/G.
The following elementary lemma, which is easily checked, shows that a complete

set of orbit representatives for G acting on π−1(O) can be obtained by considering
the action of a smaller group on a smaller subset; this holds in the more general
context of finite G-sets, i.e., finite sets with the action of a group G.

Lemma 1.1. Let X and Y be finite G-sets and π : X → Y a G-equivariant map.
Let x ∈ X and y = π(x). Then:

(1) The fiber π−1(y) is a Gy-set.
(2) Let O = G.y ⊂ Y denote the G-orbit of y. Then the map

π−1(y)/Gy → π−1(O)/G

defined by Gy.x �→ G.x, is a bijection.
(3) Gx ≤ Gy.

The upshot of Lemma 1.1(2) is that computing a set of orbit representatives for
π−1(y)/Gy is less expensive that for π−1(O)/G.

Remark 1.2. In the context of computational group theory, the fibers of a G-
equivariant map of G-sets X → Y form what is known as a block system for the
action of G on X, see [28, §2.2.5, §4.3]. The algorithm developed here could be
adapted to the more general context of group actions on sets in the presence of a
filtration of block systems.

In our context, X = V , Y = U , π : V → U is the natural quotient map. Then
(2) and Lemma 1.1(2) show that

(3) V/G =
⊔

G.(v+W )∈U/G

(v +W )/Gπ(v),

where the disjoint union is taken over a set of coset representatives v ∈ V of orbit
representatives of G acting on U .

If the computation of a set of orbit representatives (and their stabilizers) for
G acting on U is still intractible with a generic orbit-finding algorithm, we can
apply the same technique to a G-invariant subspace U ′ ⊂ U , where U ′ = W ′/W
where 0 ⊂ W ⊂ W ′ ⊂ V is a filtration of G-invariant subspaces. This way, we can
recursively leverage a filtration of V by G-invariant subspaces.

We now give the full description of an algorithm that uses this principle with
successive quotients to find a set of orbit representatives of G acting on V .
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Algorithm 1.3. Orbits(G, X, F)
Input:

• A k-vector space V with the action of a group G.
• A known G-invariant filtration F : 0 = W0 ⊂ · · · ⊂ W� ⊂ V of length �.
• A G-invariant affine subspace X of V such that X +W� = X, i.e., X is a
union of cosets for W�.

Output: A complete set of orbit representatives for G acting on X, together with
their stabilizers.

Steps:

(1) If � = 0 then return Orbits(G, X), a set of orbit representatives of G
acting on X together with their stabilizers.

(2) Set F : 0 = W1/W1 ⊂ · · · ⊂ W�/W1 ⊂ V/W1, a G-invariant filtration of
length �− 1, i.e., F is the reduction of F modulo W1. Let π1 : V → V/W1

be the natural quotient map.
(3) Compute Orbits(G, X/W1, F) via recursion.
(4) For each orbit representative y ∈ X/W1 with stabilizer Gy found in the

previous step, compute Orbits(Gy, π
−1
1 (y)) together with their stabilizers.

(5) return the union of results from step (4).

The orbit computations in Steps (1) and (4) above can be computed by a generic
algorithm. Our implementation uses the default methods in Magma [8].

Our main application is when X = V is the k-vector space of homogeneous
polynomials of degree d in n variables and G = GLn(k), however it could be useful
(e.g., in the in context of step (4) of the algorithm) to work with X an arbitrary
union of cosets for a G-invariant subspace, see [50, §1.2]. Also see Remark 1.2 for
other potential generalizations.

1.2. Complexity comparison. We consider the situation of a finite group G act-
ing on a finite set X and define the expected stabilizer order

eG(X) =
1

|X|
∑
x∈X

|Gx|

of the G-set X. Then 1 ≤ eG(X) ≤ |G| with eG(X) = 1 if and only if G acts freely
on X and eG(X) = |G| if and only if G acts trivially on X. We remark that the
proof of the orbit counting formula implies that

|X/G| = eG(X)
|X|
|G| .

A naive orbit partition algorithm, also known as union11-find, to partition all
the elements of X into orbits, works by iteratively selecting the next unlabelled
element x ∈ X and then by labelling the elements of G.x as being in the same orbit
by enumerating over G. One easily finds the runtime of this procedure.

Lemma 1.4. The runtime of a naive orbit partition algorithm to partition the
elements of X into orbits under G is proportional to

|G| · |X/G| = eG(X) · |X|.

In the situation we are interested in, where X is a vector space with a faithful
G-representation, we usually have that eG(X) is approximately equal to 1. For
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example, the expected order of the stabilizer of a cubic fourfold over F2 turns out
to be approximately 1.04.

The main improvement introduced by using the filtration method is that one
runs several orbit partitions over linear spaces of smaller dimension. We give a
precise estimate of the improvement in runtime.

Lemma 1.5. For a single-step filtration 0 ⊂ W ⊂ V of G-modules, with U = V/W ,
the runtime complexity of Algorithm 1.3 is proportional to

eG(W )eG(U)

eG(V )
· |V/G|.

Proof. Let π : V → U be the quotient map. By (3), the runtime complexity is
proportional to

(4)
∑
v

|Gπ(v)| · |(v +W )/Gπ(v)|,

where the sum is over a set of orbit representatives v ∈ V of orbit representatives
of G acting on U . One immediately sees that this is bounded by |G| · |V/G| =
eG(V )·|V |, which is the runtime of a naive orbit partition algorithm, see Lemma 1.4.
On the other hand, for each v we have

|Gπ(v)|·|(v+W )/Gπ(v)| =
∑

g∈Gπ(v)

|(v+W )g| ≤
∑
g∈G

|(v+W )g| ≤
∑
g∈G

|W g| = |G|·|W/G|,

where the rightmost inequality follows from the observation that for any element
z ∈ (v + W )g, translation by z induces a bijection W g → (v + W )g. Thus (4) is
bounded by |W/G| · |U/G| · |G| = eG(W )eG(U)/eG(V ) · |V/G|. �

Lemma 1.5 shows that the filtration method, in the presence of a nontrivial
filtration, will strictly improve upon (unless the action is trivial) a naive orbit
partition for the purposes of finding a set of orbit representatives.

If we make the heuristic assumption that the expected stabilizer orders of W ,
U , and V are all approximately equal to 1, then the asymptotic runtime is linear
in the total number of orbits in V , i.e., linear in the size of the output. Since each
orbit needs to be visited at least once by any algorithm (in particular, to write
a representative), a runtime that is linear in the number of orbits is a constant
multiple of the best possible. This assumption seems to hold in the cases identified
in §2.4.

2. Enumerating hypersurfaces

Let n, d be positive integers, and Fq denote the finite field with q elements. In
this section, we explain when and how the filtration method (Algorithm 1.3) can
be used to produce a complete enumeration of the set of Fq-isomorphism classes of

degree d hypersurfaces in Pn+1
Fq

.

Proposition 2.1. Let k be any field. If n ≥ 3 and d ≥ 3, then the set of k-
isomorphism classes of degree d hypersurfaces in Pn+1

k is in bijection with the set

of PGLn+2(k)-orbits on the set of lines P(Symd(kn+2))(k) in Symd(kn+2).
Moreover, if every element of k× is a dth power, e.g., if k = Fq and q − 1 is

relatively prime to d, then the set of k-isomorphism classes of degree d hypersurfaces
in Pn+1

k is in bijection with the set of nonzero GLn+2(k)-orbits on the k-vector space

Symd(kn+2).
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A CENSUS OF CUBIC FOURFOLDS OVER F2 7

Proof. The Grothendieck–Lefschetz Theorem [23, Exp. XII, Corollaire 3.6] says
that any automorphism of a (not necessarily smooth) hypersurface of dimension
n ≥ 3 and degree d ≥ 3 extends to the ambient Pn+1

k . In particular, two such
hypersurfaces are k-isomorphic if and only if they lie in the same PGLn+2(k)-orbit
of the linear system of OPn+1(d).

When every element of k× is a dth power, the central Gm ⊂ GLn+2 acts tran-
sitively on the set of multiples of a given homogeneous form of degree d over k, so
that the natural surjective map

Symd(kn+2)/GLn+2(k) → P(Symd(kn+2))(k)/PGLn+2(k)

is a bijection. �

2.1. A filtration on cubic fourfolds over F2. By Proposition 2.1, the GL6(F2)-
orbits of nonzero cubic forms in 6 variables are precisely the F2-isomorphism classes
of cubic fourfolds. We will now show how the filtration method lets us enumerate
a representative cubic fourfold in each isomorphism class, equivalently, a complete
set of nonzero GL6(F2)-orbit representatives on V = Sym3(F6

2).
Using Equation (1), one computes that that the number of orbits is 3 718 650,

which seems manageable compared the total number |V | = 256 of cubics. Even
with the unrealistically generous assumption that computing fg, for some general
f ∈ V and g ∈ GL6(F2), takes 10−9 (s), a naive orbit partition algorithm applied
to V using a single 4 GHz processor would take at least

256

86400 · 4 · 109 ∼ 208 days.

In other words, a direct, parallelized, and highly optimized implementation of a
naive orbit partition algorithm might enumerate all of the orbits, but it would
nevertheless take a while.

Instead, we make use of a natural two-step filtration of G-submodules

0 ⊂ W1 ⊂ W2 ⊂ V

and employ Algorithm 1.3. Here, W1 ⊂ V is the subspace of Waring representable
cubic forms, i.e., those that can be written as a sum of cubes of linear forms, and
W2 ⊂ V is the subspace of cubic forms that can be written as a sum of products of
a linear form and a square of a linear form. In other words,

W1 = span{l3 : l ∈ Sym1(F6
2)}

W2 = span{l1 · l22 : l1, l2 ∈ Sym1(F6
2)}.

A computer calculation shows that dimF2
(W1) = 21 and dimF2

(W2) = 36.
Our implementation in Magma [8] of Algorithm 1.3 with this particular two-step

filtration outputs a complete set of representatives for the 3 718 650 orbits in V with
runtime under 100 minutes on a household laptop computer. The number of orbits
we found matches the number of orbits produced by Burnside’s formula, which is
a nice sanity-check for the correctness of the algorithm.

A complete set of orbit representatives together with the code to read them is
available as an ancillary file in the arXiv distribution of this article. Our complete
code library, together with data and various sanity checks, is available from [4].
The intrinsic LoadCubicOrbitData from the CubicLib.m library reads in the orbit
representatives.
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2.2. A filtration on quartic surfaces over F2. As an alternative to the orbit
partition method employed in [33], we implemented the filtration method to find
a representative of each PGL4(F2)-orbit of quartic surfaces over F2. We note that
because there are automorphisms of K3 surfaces that do not fix a given degree 4
polarization, some isomorphism classes split up into different linear orbits, but a
list of orbit representatives will contain a complete set of isomorphism classes as a
subset. By Lemma 2.1, we can compute the GL4(F2)-orbits on the 35-dimensional
F2-vector space V = Sym4(F4

2) of homogeneous quartic forms in four variables. Let
W ⊂ V be the submodule spanned by all quartics of the form l31l2 + l1l

3
2 where

l1 and l2 are linear forms. A computer calculation shows that dimF2
(W ) = 20.

Then Algorithm 1.3, with the one-step filtration 0 ⊂ W ⊂ V , finds a complete
set of orbit representatives for the 1 732 564 orbit in V in about 3 minutes on a
laptop computer. We stumbled upon the G-submodule W ⊂ V using Magma’s
IsIrreducible intrinsic.

2.3. Cubic fourfolds over F3. Unfortunately, the GL6(F3)-module of the 56-
dimensional F3-vector space V of cubic forms in six variables has an irreducible
composition factor of dimension 50. Hence the filtration method alone does not
provide a sufficiently significant speedup to make the orbit enumeration problem
computational tractable in this case.

2.4. Filtration method for general hypersurfaces. One may wonder about
the extent to which the filtration method presented in §1 can aid in the census
of isomorphism classes of hypersurfaces of dimension n and degree d over Fq for
various (n, d, q). Since the dth symmetric power of the standard representation
of the linear algebraic group GLn+2 is irreducible, the GLn+2(Fq)-representation

Symd(Fn+2
q ) is irreducible for all Fq with char(Fq) > d (cf. [46, Theorem 1.1]),

hence the filtration method is not applicable. On the other hand, the GLn+2(Fq)-

representation Symd(Fn+2
q ) is reducible for all Fq with char(Fq) ≤ d, hence the

filtration method does offer some speedup when q is small. However, one quickly
sees (see Tables 1, 2, 3) even for moderately small parameters that such a census
is infeasible simply because it is not computationally practical to store the answer.
(We consider 1014 a generous allowance for the maximum number of orbits that
can be computed.)

When the total number of orbits is reasonably sized, the determination of whether
a particular value of (n, d, q) is in the feasible range is based on timings for com-
puting g.x on a standard laptop. We also assume that 100 cores are available to
parallelize the computation over the course of a year. Thus, the projections listed
in Tables 1, 2, 3 are perhaps excessively optimistic.

3. Surveying the database

Our census lets us survey several interesting invariants associated to cubic four-
folds over F2. We now outline the main invariants studied in this section. Our
dataset includes the F2-automorphism groups of every cubic fourfold over F2, which
happens to coincide with GL6(F2)-stabilizer that we compute in the course of run-
ning the filtration method. Some highlights of this automorphism data are pre-
sented in §3.1. In §3.2, the orders of the automorphism groups are used to count
F2-points on the discriminant complement of the moduli space of cubic hypersur-
faces in P5; we relate this count to work of Poonen [44], Church–Ellenberg–Farb [12],
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A CENSUS OF CUBIC FOURFOLDS OVER F2 9

Table 1. List of feasible cases for q = 2. Too many orbits in-
dicated by X; and Y, N indicate yes, no, respectively. The left
symbol is for a naive orbit partition algorithm, and the right sym-
bol is using the filtration method.

n\d 2 3 4 5 6 7 8 9 · · · 48 49
0 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y · · · Y|Y X
1 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y X · · · X X

2 Y|Y Y|Y Y|Y N|Y X X X X · · · X X

3 Y|Y Y|Y X X X X X X · · · X X

4 Y|Y N|Y X X X X X X · · · X X

5 Y|Y N|Y X X X X X X · · · X X

6 Y|Y X X X X X X X · · · X X
7 Y|Y X X X X X X X · · · X X

8 N|Y X X X X X X X · · · X X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

20 N|Y X X X X X X X · · · X X

Table 2. List of feasible cases for q = 3. Too many orbits in-
dicated by X; and Y, N indicate yes, no, respectively. The left
symbol is for basic union-find, and the right symbol is using the
filtration method.

n\d 2 3 4 5 6 7 8 9 · · · 31 32
0 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y · · · Y|Y X

1 Y|Y Y|Y Y|Y Y|Y Y|Y N|Y X X · · · X X

2 Y|Y Y|Y N|Y X X X X X · · · X X

3 Y|Y N|Y X X X X X X · · · X X

4 Y|Y N|N X X X X X X · · · X X

5 Y|Y X X X X X X X · · · X X
6 N|N X X X X X X X · · · X X

Table 3. List of feasible cases for q = 5. Too many orbits in-
dicated by X; and Y, N indicate yes, no, respectively. The left
symbol is for basic naive orbit partition algorithm, and the right
symbol is using the filtration method.

n\d 2 3 4 5 6 7 8 9 · · · 22 23
0 Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y Y|Y · · · Y|Y X

1 Y|Y Y|Y Y|Y Y|Y N|Y X X X · · · X X

2 Y|Y Y|Y X X X X X X · · · X X
3 Y|Y N|N X X X X X X · · · X X
4 Y|Y X X X X X X X · · · X X
5 N|N X X X X X X X · · · X X

Vakil–Wood [49], and Howe [29]. Finally, in §3.3, we compute all F2-lines and
planes on cubics in our database, verifying statistics predicted by Debarre–Laface–
Roulleau [14] and giving a lower bound on the number of smooth rational cubic
fourfolds over F2.

3.1. Automorphisms of cubics. The automorphism groups of cubic hypersur-
faces over various fields have been well-studied. Over the complex numbers, the
symplectic automorphism groups of smooth cubic fourfolds were recently fully clas-
sified by Laza and Zheng [36], and they additionally prove that the Fermat cubic
has the largest automorphism group of any smooth cubic fourfold over C (see also

Licensed to Dartmouth Coll. Prepared on Mon Nov 25 14:06:05 EST 2024 for download from IP 129.170.197.170.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 A. AUEL, A. KULKARNI, J. PETOK, AND J. WEINBAUM

[43]). In positive characteristic, we do not know of any body of literature on the
automorphism groups of cubic hypersurfaces of dimension > 2. The automorphism
groups of cubic surfaces over algebraically closed fields of arbitrary characteristic
were completely classified by Dolgachev and Duncan [15]. Our orbit-finding method
yields a complete classification of the F2-automorphism groups of cubic surfaces,
threefolds, and fourfolds. We report some specific results on cubic fourfolds here.

First, we compare the automorphism group of a hypersurface with its stabilizer
subgroup.

Proposition 3.1. Let k be a field and assume that n ≥ 3 and d ≥ 3. Let f ∈
Symd(kn+2) be nonzero and X ⊂ Pn+1

k be the associated projective hypersurface.
Then the PGLn+2(k)-stabilizer of the line spanned by f is isomorphic to the group
Autk(X) of k-automorphisms X.

Moreover, if every element in k× is a dth power (e.g., if k = Fq and q − 1 is
relatively prime to d) then the GLn+2(k)-stabilizer of f is isomorphic to the group
Autk(X) of k-automorphisms X.

Proof. The first statement follows immediately from Proposition 2.1. As for the
second statement, if Gf ⊂ GLn+2 denotes the stabilizer k-subgroup scheme of f ,
then we have a short exact sequence of k-group schemes

1 → μd → Gf → Autk(X) → 1,

where here, Autk(X) is considered as a constant group scheme. The associated
exact sequence in flat cohomology starts

1 → μd(k) → Gf (k) → Aut(X) → H1(k, μd).

Under the hypotheses that every element in k× is a dth power, we have that μd(k)
andH1(k, μd) are trivial. The statement then follows since Gf (k) coincides with the
GLn+2(k)-stabilizer subgroup of f . Indeed, the exact sequence in flat cohomology
associated to the stabilizer subgroup group scheme starts

1 → Gf (k) → GLn+2(k) → (GLn+2.f)(k) → H1(k,Gf )

and, since f is a k-rational point in the orbit, Gf (k) is precisely the subset of
elements of GLn+2(k) acting trivially on f . �

Hence in the case of cubic fourfolds over F2, the stabilizer of a cubic form coin-
cides with the F2-automorphism group of its associated hypersurface. To compute
the G = GL6(F2)-stabilizer of the cubic form f ∈ V that defines X, we use the same
idea behind Algorithm 1.3 to successively reduce the order of the acting group:
letting π1 : V → V/W1 and π2 : V/W1 → V/W2 denote the natural projections,
Lemma 1.1(3) tells us that

Gf = (Gπ1(f))f = ((Gπ2(f))π1(f))f .

Remark 3.2 (The isomorphism problem). A similar application of the filtration
method gives an efficient algorithm for solving the cubic isomorphism problem
over F2: our library includes an intrinsic IsEquivalentCubics which determines
whether two cubic fourfolds are F2-isomorphic, and if they are, returns an explicit
isomorphism between them. It runs in about 0.2 seconds per pair of cubics on a
household laptop.
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A CENSUS OF CUBIC FOURFOLDS OVER F2 11

We now discuss some highlights emerging from our computation of the auto-
morphism groups of cubic fourfolds over F2. It is a well-known result that the
automorphism group of a generic hypersurface of dimension n ≥ 2 and degree
d ≥ 3, over an algebraically closed field, is trivial (see [41]). Indeed, our survey
shows that AutF2

(X) = {id} for most cubic fourfolds.

Computation 3.3. Among the 3 718 649 isomorphism classes of cubic fourfolds
over F2, there are 3 455 271, or about 92.9%, with trivial stabilizer. Among the
1 069 562 isomorphism classes of smooth cubic fourfolds over F2, there are 1 029 478,
or about 96.3%, with trivial stabilizer.

We summarize our computation of all of the nontrivial automorphism groups of
cubic fourfolds in the next theorem.

Theorem 3.4. If X is cubic fourfold over F2, then the order of AutF2
(X) is one

of the following 87 possibilities:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 30, 32, 36, 42, 48, 60,
63, 64, 72, 84, 96, 108, 120, 126, 128, 144, 160, 168, 192, 256, 288, 320, 384,
512, 576, 648, 672, 720, 768, 882, 1024, 1152, 1344, 1440, 1536, 1920, 2016,
2048, 2160, 2304, 3072, 3840, 4032, 4608, 6144, 7680, 9216, 10752, 11520,
12288, 18432, 23040, 24576, 27648, 32256, 36864, 73728, 86016, 172032,
258048, 344064, 516096, 1105920, 1451520, 1806336, 5160960, 10321920,
15482880, 30965760, 319979520.

If X is a smooth cubic fourfold over F2, then the order of AutF2
(X) is one of the

following 40 possibilities:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 24, 30, 32, 36, 48, 64, 72, 96, 108,
120, 128, 144, 160, 192, 288, 384, 512, 576, 648, 1440, 1536, 2160, 4608,
10752, 23040, 1451520.

Remark 3.5 (An extremal cubic fourfold). The smooth cubic fourfold

(5) X1 : x0x
2
3 + x1x

2
4 + x2x

2
5 + x2

0x3 + x2
1x4 + x2

2x5 = 0

is the unique cubic fourfold over F2 with |Aut(X1)(F2)| = 1451 520; in fact, our
stabilizer computations yield that the F2-automorphisms form a group isomorphic
to the symplectic group Sp(6,F2), and this is the largest F2-automorphism group
of all smooth F2-cubic fourfolds. This cubic fourfold was also studied in [16, 31].

The appearance of the symplectic group admits a simple explanation. We con-
sider the F4/F2-Hermitian form defined by

H(x, y) := x0y
2
5 + x1y

2
4 + x2y

2
3 + x3y

2
4 + x4y

2
1 + x5y

2
0 ,

where x = (x0, . . . , x5) and y = (y0, . . . , y5) are in F6
4. The map from Hermitian

forms to cubic forms defined by H(x, y) �→ H(x, x) is injective, so in particular,
g ∈ GL6(F4) fixes H(x, y) if and only if it fixes H(x, x). We observe that the group
of F2-rational points of the unitary group of H is isomorphic to Sp(6,F2).

Remark 3.6 (The Fermat cubic fourfold). There is also a unique smooth cubic
fourfold X2 with |Aut(X2)(F2)| = 23040, the Fermat cubic fourfold

X2 : x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0.
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12 A. AUEL, A. KULKARNI, J. PETOK, AND J. WEINBAUM

Incidentally, there are also three singular cubic fourfolds with an automorphism
group of this order, two of which have F2-automorphism group isomorphic to
AutF2

(X2). One easily sees that the cubic X1 is an F2-form of the Fermat cu-
bic X2, split by any K/F2 containing a primitive third root of unity; in particular,
X1 ×F2

F4
∼= X2 ×F2

F4.

3.2. Point counting on moduli spaces. Let Ud be the the discriminant comple-
ment in the Hilbert scheme of degree d hypersurfaces over Fq, i.e., Ud is the open

subscheme of P
(d+n

d )−1

Fq
parametrizing smooth degree d hypersurfaces in Pn

Fq
. A rel-

evant question is: what is the probability that a randomly chosen hypersurface is
smooth? In [44], Poonen gave an answer asymptotically in d, proving that

lim
d→∞

|Ud(Fq)|
|P(

d+n
d )−1(Fq)|

=
1

ZPn(n+ 1)
=

∏
1≤k≤n

(
1− 1

qk

)
.

Poonen’s result on point counting on discriminant complements has been related
to the phenomena of stabilization in the Grothendieck ring in work of Vakil and
Wood [49], and has also been studied from the perspective of homological and
representation stability by Church, Ellenberg, and Farb [12] and by Howe [29].

In the case of hypersurfaces in P5 over F2, Poonen’s result says that the proba-
bility as d → ∞ that a randomly chosen hypersurface of degree d is smooth should
be

(6)
∏

1≤k≤5

(
1− 1

2k

)
= 0.298004150390625.

Our computations let us compute |U3(F2)| exactly, and therefore the probability
that a randomly chosen cubic hypersurface in P5

F2
is smooth: summing the sizes

of the orbits [PGL6(F2) : AutF2
(X)] gives the F2-point count on the discriminant

complement U3.

Theorem 3.7. The cardinality of the set of smooth cubic fourfolds over F2 (not
considered up to isomorphism) is

|U3(F2)| = 21 138 040 038 850 560,

and thus the probability that a random cubic fourfold over F2 is smooth is exactly

|U3(F2)|
|P55(F2)|

= 0.29334923433225412736646831035614013671875.

We compare this count to some other counts of the proportion of smooth small
degree hypersurfaces over F2, see Table 4. The proportion of cubic fourfolds which
are smooth is closer to the Poonen limit than any proportion we could compute.

We can also give some point counts on a series of related moduli spaces:

Csm, the coarse moduli space of smooth cubic fourfolds,

C , the moduli stack of cubic fourfolds, and

C sm, the moduli stack of smooth cubic fourfolds.

Using our computations of the automorphism groups discussed above, we determine
the stacky point counts:

|C (F2)| =
∑

X∈C3

1

|AutF2
(X)| =

4803839602528529

1343913984
≈ 3 574 514.18746,
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A CENSUS OF CUBIC FOURFOLDS OVER F2 13

Table 4. List of proportion of hypersurfaces of degree d in Pn+1

that are smooth, over F2. The last column is the asymptotic pro-
portion as d → ∞ from Poonen’s theorem.

n\d 1 2 3 4 5
∏

1≤k≤n+1

(
1−

1

2k

)

1 1 4
9

≈ 0.444 112
341

≈ 0.328 1560
4681

≈ 0.333 98304
299593

≈0.328 3
8

= 0.375

2 1 448
1023

≈ 0.438 21504
69905

≈ 0.308 10590854400
34359738367

≈0.308 21
64

≈ 0.328

3 1 64
151

≈ 0.424 330301440
1108378657

≈ 0.298 315
1024

≈ 0.308

4 1 126976
299593

≈0.424 1409202669256704
4803839602528529

≈0.293 9765
32768

≈ 0.298

where C3 is a complete set of F2-isomorphism classes of cubic fourfolds X over F2,
and

|C sm(F2)| =
∑

X∈Csm
3

1

|AutF2
(X)| = 1048 581,

where Csm
3 is the subset of smooth isomorphism classes.

Furthermore, there is an equality of point counts

|Csm(F2)| = |C sm(F2)|,

because C sm is a DM stack, and therefore its stacky point count is the same as
the point count of its coarse space, see [6, Propositon 1.3]. Our methods still leave
open the problem of calculating |C(F2)|, where C is the course moduli space of all
cubic fourfolds.

3.3. Lines on cubic fourfolds. We compute the set of F2-lines on every cubic
fourfold. We find that there exist exactly 65 cubic fourfolds which contain exactly
one F2-line, only 29 of which are smooth (the first example of such a cubic was
given in [14]). Our exhaustive computations confirm that every cubic fourfold X
contains an odd number of F2-lines (so in particular they all contain at least one
such line). In fact, this was already proved by Debarre–Laface–Roulleau.

Lemma 3.8 ([14]). Every cubic fourfold over F2 contains a line defined over F2.

In [14], this result is derived using a formula of Galkin and Shinder ([14, Equation
8], [22]): there is a relation between point counts on X and its Fano variety of lines
F1(X), which in the case of cubic fourfolds over F2 yields

(7) |F1(X)(F2)| =
|X(F2)|2 − 2(1 + 24)|X(F2)|+ |X(F4)|

2 · 22 + 4 |Sing(X)(F2)|.

In particular, since |X(F2)| ≥ 1 (by Chevalley–Warning), one has |F1(X)(F2)| ≥ 1.
If one is only interested in the number of lines on a cubic fourfold then the above

formula suffices provided one computes point counts on X (as we do in §4), but
we still computed the full set of F2-lines on each cubic with other applications in
mind—for instance, if one is interested in searching for various families of lines on
cubics, like planes and scrolls, it is useful to know the full set of lines.

We plot a histogram, see Figure 1, of the count (weighted by stabilizer) of the
number of isomorphism classes of cubics containing a given number of lines. We
also plot the same histogram for just the smooth cubics. The histograms match
the prediction from [14].
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14 A. AUEL, A. KULKARNI, J. PETOK, AND J. WEINBAUM

Figure 1. Stacky counts of the number of cubics containing n
lines. A plot restricting to smooth cubics is given on the right.

Remark 3.9. The maximal number of lines on a smooth cubic fourfold over F2 is
315. The extremal cubic fourfold X1 in Remark 3.5 is the unique smooth cubic
fourfold over F2 with 315 lines.

The most likely number of lines on a cubic fourfold over F2, and on a smooth
cubic fourfold over F2, is 33 (i.e., both histograms in Figure 1 have a peak at 33).
The expected number of lines on a smooth cubic fourfold over F2, with respect to
the uniform distribution on U3(F2), is ≈ 10.2667.

There are “bumps” on these two histograms, which become significantly more
pronounced in the figure on the right. We do not know how to entirely explain
these bumps, but we remark that the sparseness of the smooth cubic fourfolds in
the database partially explains why the gaps are larger on the right.

3.4. Planes on cubic fourfolds. We also compute the complete set of F2-planes
on every cubic fourfold over F2. In contrast to the case of lines, not every cubic
has a plane; indeed, cubic fourfolds containing plane live on the Noether–Lefschetz
divisor C8 ⊂ C. There are 2 116 029 cubic fourfolds, or 56.90% up to isomorphism,
containing at least one F2-plane, of which 702, 153 are smooth, or 65.65% of the
smooth cubic fourfolds up to isomorphism. Figure 2 shows the histograms recording
how many cubic fourfolds (respectively, smooth cubic fourfolds) contain a fixed
number of F2-planes.

As mentioned in the introduction, the rationality problem for cubic fourfolds
has been a primary motivation for their study over the last 80 years (see [19], [5],
and the survey [26]). There is a well-known rationality construction for any cubic
X containing a pair of disjoint F2-planes P1 and P2: X is birational to P1 × P2.
Counting the cubics in our database with pairs of disjoint F2 planes gives a lower
bound on the number of rational cubic fourfolds over F2:

Computation 3.10. There are 429 744 isomorphism classes of cubic fourfolds in
C(F2) containing two disjoint F2-planes, and 36 572 of these cubics are smooth.
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A CENSUS OF CUBIC FOURFOLDS OVER F2 15

Figure 2. Stacky counts of the number of cubics containing n
planes. A plot restricting to smooth cubics is given on the right.

4. Zeta functions of cubic fourfolds

In this section we explain how we compute the zeta functions of all smooth cubic
fourfolds over F2. The reader interested in the results of the computation is advised
to skip to §4.3.

4.1. Computational methods. Let q = 2, and let F : X
Fq

→ X
Fq

be the relative

Frobenius endomorphism. By the Weil conjectures, the zeta function for a smooth
cubic fourfold X/Fq is given by

ZX(q−s)=
1

(1− q−s)(1− q1−s)(1− q2−s)QX(q−s)(1− q3−s)(1−q4−s)
=

ZP4(q−s)

QX(q−s)
,

where the interesting factor QX(t) is given by, for an odd prime �,

QX(t) = det
(
Id− tF ∗ | H4

ét,prim(XF2
,Q�)

)
.

Let us now describe how we efficiently compute the zeta functions of cubic four-
folds. Our code computes the Weil polynomials

PX(t) = det
(
F ∗ − tId | H4

ét,prim(XF2
,Q�(2))

)
for each isomorphism class of smooth cubic fourfold X/F2 in our database; each
PX(t) is a monic, degree 22 polynomial with coefficients in 1

2Z whose roots lie on the
unit circle. The Weil polynomial PX(t) is related to QX(t) via PX(t) = ±QX(t/4)
where the sign is the sign occurring in the functional equation, see (8). Using
a slight adaptation of the algorithm of Addington–Auel in [1] (described below),
we can efficiently compute the point counts of smooth (and even mildly singular)
cubic fourfolds over F2. Then for each smooth cubic X, we compute the first 11
nonleading coefficients of P (t) using the points counts |X(F2k)| for 1 ≤ k ≤ 11.
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16 A. AUEL, A. KULKARNI, J. PETOK, AND J. WEINBAUM

The 11 remaining coefficients are computed by leveraging the functional equation

(8) PX(t) = εt22PX(t−1),

where ε ∈ {±1} is the sign of the functional equation, to fully determine PX(t).
In order to determine ε, we use work of T. Saito [45] to relate it to the divided
discriminant discd(f) of an integral homogeneous cubic lift f ∈ Z[x0, . . . , x5], see [45,
Definition 2.2] for the definition of discd(f).

Theorem 4.1 ([45, §4]). Let X be a smooth cubic fourfold over F2, and let f ∈
Z[x0, . . . , x5] be a lift of a defining equation for X. Then the sign of the functional
equation in the zeta function of X is (−1)(discd(f)+1)/4.

Proof. We first remark that, by (8), the determinant of the action of Frobenius on
H4

ét
(X

F2
,Q�(2)) is the sign of the function equation of the zeta function of X. Thus

the determinant Galois representation

detH4
ét
(X

F2
,Q�(2)) : Gal(F2/F2) → {±1}

is a quadratic character, which is nontrivial precisely when ε = −1. By [45, The-
orem 4.2 and Corollary 4.3], this is equivalent to B(f)A(f)−2 ≡ 1 in F2, where
A(f), B(f) ∈ Z satisfy −discd(f) = A(f)2+4B(f); we note that in our case, where
n = 4 and d = 3, we have that ε(n, d) = −1 in the notation of [45, (3.5.1)]. Mod-
ulo 4, we can take A(f) = 1 and B(f) ∈ {0, 1}, hence we have that the sign of the
function equation is (−1)B(f) = (−1)(discd(f)+1)/4. �

Applying Saito’s criterion to the smooth cubics in our database, one finds that
nearly half of all smooth cubic fourfolds take the positive sign in their functional
equation.

Computation 4.2. Among the 1 069 562 isomorphism classes of smooth cubic four-
folds over F2, there are exactly 531 334, or about 49.8%, for which the sign of the
functional equation is +1.

4.2. Addington–Auel point counting algorithm. For the sake of documenta-
tion, we describe our adaptations to the point counting algorithm of Addington
and Auel [1, §3], the idea of which itself goes back (for counting points on cu-
bic threefolds) to Bombieri–Swinnerton-Dyer [7] and was used by Debarre–Laface–
Roulleau [14, §4.3]. Our improvements are as follows. First, we remove the hy-
pothesis that X is smooth. Second, we no longer require that the cubic fourfold
X contains an F2-line not also contained in a plane P ⊂ X ×F2

F2. (Nevertheless,
there are only 55 smooth cubic fourfolds over F2 where this fails.)

The key step in the algorithm is to transform X into a conic fibration. We denote
P5 = ProjF2[y0, . . . , y5] and X ⊂ P5 an arbitrary cubic fourfold. We let � ⊂ X
be a line (such a line must exist by Lemma 3.8) and change coordinates so that
� = {y0 = y1 = y2 = y3 = 0}. Then the defining equation of X is

(9)
A(y0, . . . , y3)y

2
4 +B(y0, . . . , y3)y4y5 + C(y0, . . . , y3)y

2
5

+D(y0, . . . , y3)y4 + E(y0, . . . , y3)y5 + F (y0, . . . , y3) = 0,

where A, . . . , F are homogeneous polynomials of degrees 1, 1, 1, 2, 2, 3, respectively.
Consider the projection φ : X ��� P3 = ProjF2[y0, . . . , y3] away from �. The

points of the base P3 correspond to the projective 2-planes P in P5 containing �.
For any plane P ⊃ � not contained in X, the scheme theoretic intersection of P
and X is � ∪ C, where C is a plane conic, and thus the fiber φ−1([P ]) is C. Hence
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A CENSUS OF CUBIC FOURFOLDS OVER F2 17

the resolution φ : X̃ → P3, where π : X̃ → X is the blow up of X along �, is a conic
fibration.

Our algorithm will also require us to compute the point counts for the exceptional
locus of π. Since π is the blow up along a line, π−1(x) is a linear space for every
point x ∈ X. Specifically,

π−1(x) ∼=

⎧⎪⎨
⎪⎩
P0 if x �∈ �

P2 if x ∈ �, x �∈ Xsing

P3 otherwise

.

More precisely, the blow up P̃5 of P5 along � has exceptional divisor P�(N�/P5) =

� × P3 → �. Thus the exceptional divisor of X̃, being the strict transform of X in

P̃5, is a divisor in �×P3. When x ∈ � is a smooth point of X then π−1(x) ⊂ {x}×P3

is the P2 of points in P3 corresponding to 2-planes through � tangent to X at x.
However, when x ∈ � is a singular point of X, the fiber π−1(x) picks out all the
planes through �, i.e., the fiber is the entire P3.

Note that x ∈ � is a singular point of X if and only if it a basepoint of the
3-dimensional family of conics defined in (9). Thus, depending on A,B,C, we have
one of the following cases for the basepoints that lie in on �:

• 0 basepoints
• 1 basepoint
• 2 basepoints (both defined over F2)
• 2 basepoints (neither defined over F2)
• A line of basepoints (A = B = C = 0).

It is thus enough to know these basepoints on the line � in order to compute the
point counts for the exceptional divisor, and most of the runtime will be devoted
to point counting on the conic fibration.

Algorithm 4.3. CountPoints(X, q) (Adapted from [1, §3])
Input:

• A cubic fourfold X
• q = 2r

Steps:

(1) Choose an F2-line � ⊂ X (guaranteed by Lemma 3.8).
(2) The projection away from � yields a morphism φ : Bl�(X) → P3 whose

generic fiber is a conic, as in equation (9).
(3) If A = B = C = D = E = 0, then φ gives X the structure of a cone over a

cubic surface Y = {F = 0} ⊂ P3. In this case

return 1 + q + |Y (Fq)| · q2.

(4) Compute |Bl�(X)(Fq)| by counting Fq-points in each fiber of φ: let

Δ = {AE2 +B2F + CD2 −BDE = 0} ⊆ P3

be the discriminant subscheme parametrizing the fibers of φ which are
either planes or singular conics. For each y ∈ Δ(Fq), the point count
|(φ−1(y))(Fq)| is determined as follows:
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18 A. AUEL, A. KULKARNI, J. PETOK, AND J. WEINBAUM

• if y ∈ Δ and y /∈ {A = · · · = F = 0}, then φ−1(y) is a singular plane
conic over Fq. It has 0, q+1, or 2q+1 Fq-points, which can be deter-
mined by its rank and Arf invariant.

• if y ∈ {A = · · · = F = 0}, then φ−1(y) is a 2-plane over Fq with
1 + q + q2 Fq-points.

Then

|Bl�(X)(Fq)| =
∑

x∈Δ(Fq)

|(φ−1(x))(Fq)|+ (q + 1)(1 + q + q2 + q3 − |Δ(Fq)|).

(5) Determine the exceptional divisor T of π.
• If x ∈ � is not a singular point of X, |π−1(x)(Fq)| = 1 + q + q2.
• If x ∈ � is a singular point, |π−1(x)(Fq)| = 1 + q + q2 + q3.

In the case that � ⊂ Xsm, we have |T (Fq)| = (1 + q)(1 + q + q2). Thus, we
may compute

|Bl�(X)(Fq)| = |X(Fq)|+ |T (Fq)| − |P1(Fq)|
return |X(Fq)|.

As in the original algorithm in [1], we gain significant speedup in the enumer-
ation of Δ(Fq) by taking the projection Δ\{p} → P2 away from a singular point
p ∈ Δsing(F2) and enumerating over P2(Fq). In the process of running the point-
counting algorithm, we discovered that we can always find such a singular point,
which answers a question of [1] (see footnote 4 of loc. cit.). In fact, we can give a
direct proof of this over any field.

Proposition 4.4. Let X be a smooth cubic fourfold containing a line over a field k.
Then X contains a (possibly different) line such that the discriminant of the asso-
ciated conic fibration has a singular k-point.

Proof. Let � ⊂ X be a line defined over k. We remark that any line defined over any
field contains at least three rational points, and we choose three such points. The
intersection of the projectivized tangent spaces (which are projective 4-planes over k
sinceX is smooth) at these three points contains a projective 2-plane P ⊂ P5 over k.
The plane P is tangent to X along �. Thus the scheme theoretic intersection of P
and X is plane cubic that contains � with multiplicity (at least) 2, hence contains
another line �′ (which may be equal to �). By definition, the fiber of the conic
fibration associated to �′, over the point of P3 corresponding to P , is a double line,
hence the discriminant has a k-rational singular point. �

In fact, in Proposition 4.4, we did not need to assume that X is smooth, but only
that X contains a line that meets the smooth locus in at least 3 rational points.

4.3. Census of the zeta functions. Our computations of all the zeta functions
of smooth cubic fourfolds over F2 yield the following result.

Computation 4.5. There are 86 472 distinct zeta functions realized among the
1 069 562 isomorphism classes of smooth cubic fourfolds over F2.

In doing the computation above, we also verified a conjecture of Elsenhans and
Jahnel [18, Theorem 1.9] in the case of cubic fourfolds over F2.
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Theorem 4.6. Let X be a smooth cubic fourfold defined over F2, and PX(t) its
primitive Weil polynomial. Then 2PX(−1) is an integer square.

4.4. The K3-part of the Weil polynomial of a cubic fourfold. If (1 − t)
divides the Weil polynomial PX(t) of some cubic fourfold X, then PX(t)/(1− t) is
a degree 21 Weil polynomial, which we call the K3-part of the Weil polynomial of
the cubic fourfold.

Computation 4.7. We compared the Weil polynomials PX(t)/(1− t) against the
list generated by Kedlaya–Sutherland [33, Computation 3(c)] of Weil polynomials
of degree 21 which are of “K3-type”, finding that there are 71 476 K3-type Weil
polynomials which are the K3-part of the Weil polynomial of some cubic fourfold
over F2.

As expected, Computation 4.7 shows that cubic fourfolds produce K3-type Weil
polynomials that are not realized by any quartic K3 over F2; indeed, there are only
52 755 degree 21 Weil polynomials arising from these quartic surfaces ([33, Com-
putation 4(c)]). This fits in to the larger Honda–Tate program of giving geometric
realizations for the Weil polynomials in [33, Computation 3(c)], see also [3].

These K3-type Weil polynomials arising form cubic fourfolds are sometimes (but
not always) explained by the phenomenon of associated K3 surfaces mentioned in
the introduction. For instance, whenever there is a geometric construction of an
associated (twisted) K3 surface defined over the ground field k, the K3-part of the
Weil polynomial of the cubic fourfold arises from an honest K3 surface over k. This
is part of a more general phenomenon: whenever there is a k-linear Fourier–Mukai
equivalence between the K3 category of X (as defined in [35], see [30]) and the
derived category of (twisted) coherent sheaves on a K3 surface, Fu and Vial [20]
show that the transcendental zeta functions of S and X agree (in fact, they have
isomorphic rational Chow motives). We refer the interested reader to the excellent
survey of Hassett [26] for more on associated K3 surfaces of cubic fourfolds.

4.5. Newton polygons. Having tabulated the zeta functions of the smooth cubic
fourfolds over F2, we can determine their Newton polygons. The Newton polygon
of a cubic fourfold over a finite field is determined by its height h, which can be
any integer 1 ≤ h ≤ 10, or h = ∞. We find smooth cubic fourfolds over F2 of every
possible height, see Table 5 for the complete statistics.

Theorem 4.8. Each Newton stratum in the moduli space of smooth cubic fourfolds
contains F2-points.

A cubic fourfold is called ordinary if h = 1 and supersingular if h = ∞.

Computation 4.9. There are 8688 supersingular cubic fourfolds and 533, 262 or-
dinary cubic fourfolds up to isomorphism over F2.

Table 5. Heights of isomorphism classes of cubic fourfolds over F2

h 1 2 3 4 5 6 7 8 9 10 ∞

# 533262 267355 131922 66974 31806 16041 6901 4575 1301 737 8688
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4.6. Codimension 2 algebraic cycles on cubic fourfolds. The Tate conjecture
for K3 surfaces over finite fields of characteristic 2 has been proved by Ito–Ito–
Koshikawa [32] and Kim–Madapusi Pera [34], [40]. We now explain how methods
used to prove these results, as well as results for Gushel–Mukai varieties by Fu and
Moonen [21], lead to a proof of the Tate conjecture for codimension 2 cycles on
cubic fourfolds over F2. Since this result is surely known to the experts, we only
provide a sketch of the proof to fill an existing gap in the literature.

Theorem 4.10. Let X be a smooth cubic fourfold over a finite field k of charac-
teristic 2. Then the cycle class map induces an isomorphism

CH2(X)⊗Q� → H4
ét(X,Q�(2))

Gal(k/k).

Proof. We use Madapusi Pera’s approach to proving the Tate conjecture for codi-
mension 2 cycles on smooth cubic fourfolds outlined in [39, §5.14], together with
the integral 2-adic models of Shimura varieties constructed in [34], and the revised
approach in [40], as adopted in [21].

Let C sm be the stack of smooth cubic fourfolds over Z(2). Let L ⊂ L′ be the

abstract lattice of the primitive part inside the H4 of a cubic fourfold. Then L is
even with signature (20, 2) and discriminant 3 and L′ is odd unimodular of signature

(21, 2). As in [39, §5.14], let C̃ sm → C sm be the double cover parameterizing cubic
fourfolds together with a choice of isomorphism det(L) ⊗ Z� → det(〈h2〉⊥), where
h2 ∈ H4

ét(Xks ,Z�(2)) is the cycle class of the square of the hyperplane section. Then
by the arguments of [34, Proposition 4.15], the classical Kuga–Satake map extends

to a morphism C̃ sm → S(L), where S(L) is a Zp-model of the orthogonal Shimura
variety Sh(L) attached to L, see [34, Theorem 3.10]. Here, one needs to take a
prime p lying above 2 in an extension E/Q (of degree at most 2) that trivializes
the quadratic character induced by the determinant-preserving Galois action on the
primitive cohomology 〈h2〉⊥, see [21, Remark 6.25 and §7.1]. This subtlety, which
arises since the primitive cohomology has even rank, hence its special orthogonal
group contains ±id, is not directly addressed in [39, §5.14]. However, to prove the
Tate conjecture for codimension 2 cycles on X, we are free to take a finite extension
of k, cf. [48, § 2, p. 580], namely, the residue field of Ep.

Following the strategy in [39], the main step is to show that the map C̃ sm → S(L)
is étale. We remark that the de Rham realization of the universal lattice LdR ⊂ L′

dR

is a vector subbundle since any polarization (having self-intersection 3) is primitive.
Similarly, we appeal to [40, Lemma 1.10] to show that the map induced on de Rham
realizations extends to an isometry to filtered vector bundles

αdR : LdR(−2) → H4
prim,dR

over C̃ sm. The rest of the proof proceeds as in [39, §5.14], since C̃ sm is a smooth
Artin stack, as proved by Levin [37, §3] (cf. [39, Proof of Theorem 5.15]), and the

deformation theory of C̃ sm is controlled by the degree 4 part of the Hodge filtration
on H4

prim,dR. �

For a Weil polynomial P (t) of a cubic fourfold X, we write

P (t) = Pcyc(t)Pnon−cyc(t)

where Pcyc(t) is the product of all cyclotomic factors of P (t). If (t − 1)m exactly
divides Pcyc(t) and degPcyc(t) = n, then we have, as a direct consequence of the
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Tate conjecture, that

rkCH2(X) = m and rkCH2(X) = n.

Thus, we can report the following statistics for the algebraic and geometric ranks
for smooth cubic fourfolds over F2, see Tables 6 and 7.

Table 6. Rank of the group of algebraic cycles CH2(X)

rkCH2(X) 1 2 3 4 5 6 7 8

how many 232218 426619 273007 106035 25521 5377 581 178

rkCH2(X) 9 10 11 12 13 14 15 16

how many 7 13 0 5 0 0 0 1

Theorem 4.11. If X is a smooth cubic fourfold over F2, then the algebraic rank
r = rkCH2(X) can be any integer 1 ≤ r ≤ 10, or r = 12, 16 and, furthermore,
there are ordinary cubic fourfolds of every algebraic rank up to rank 10.

Remark 4.12. In fact, the extremal cubic fourfold X1 in Remark 3.5 is the unique
smooth cubic fourfold over F2 with algebraic rank 16.

Table 7. Rank of the group of geometric cycles CH2(X)

rkCH2(X) 1 3 5 7 9 11

how many 107552 254144 153410 179596 107911 98978

rkCH2(X) 13 15 17 19 21 23

how many 61054 50777 27339 14588 5525 8688

Theorem 4.13. If X is a smooth cubic fourfold over F2 then the geometric rank
r = rkCH2(X) can be any odd number r ≤ 23, and all such ranks r ≤ 21 are
realized by ordinary smooth cubic fourfolds.

We remark that since the Tate conjecture holds for a supersingular cubic fourfold
X, the algebraic cycles CH2(X) span H4

ét(X,Q�(2)) and so any supersingular cubic

fourfold has geometric rank rkCH2(X) = 23.
The tables below summarize our computations of the ranks of the algebraic and

geometric Chow groups of smooth cubic fourfolds over F2.

4.7. Implementation and verification. We implemented Algorithm 4.3 in C++

using many of the ideas and optimizations introduced in [17, Algorithm 15] and
developed in [27, §8] and [33], including a precomputation of Galois orbit repre-
sentatives of F2m and utilizing Intel x86 vector carry-less finite field multiplication
(vpclmulqdq) further reducing clock cycles. We also utilized many of the imple-
mentation ideas in [1, §5], including a precomputation of roots of quadratic and
cubic polynomials. We implemented and optimized a parallelization of this algo-
rithm over the entire database on a 24-core 48-thread 3.0 GHz cluster housed at
Dartmouth, which in total, took the equivalent of a month of single thread CPU
time.

In addition to the verification checks from [1, §5] (including comparing individual
point counts with Magma’s [8] algorithm, comparing against known zeta function
computations in the literature, and projecting from different lines) we also tested
the algorithm on selection of mildly and highly singular cubic fourfolds. There
checks can be found in [4, /src/CubicLib/test]
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