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Encryption Space (M3 Naval Enigma)

▶ 5 rotors to choose from
▶ 26 rotor positions
▶ 26 ring settings
▶ 10 plugboard wires
▶ 2 reflectors (very rarely 3)
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Plugboard (Order Matters)

26
2

24
2

 . . .

8
2


= 26!

2 · 24! · 24!
2 · 22! . . .

8!
2 · 6!

= 26!
210 · 6!



Plugboard (Order Doesn’t Matter)

26!
210 · 6! · 1

10! = 150738274937250



Encryption Space (M3 Naval Enigma)

▶
(5

3
)

· 3!
▶ 263

▶ 262

▶ 26!
210·6! · 1

10!
▶ 2



Encryption Space (M3 Naval Enigma)

2.1491737465450123872 · 1023 ≈ 277

A 77-bit key space in an era before computers!



Permutations

Definition
A permutation on a set S is a bijective function
σ : S → S

Example
▶ The identity permutation id(x) = x ∀ x ∈ S
▶ Caesar ciphers



Permutations

The set of permutations on a set S is denoted
Sym(X ) and forms a group under the operation of
function composition.
▶ The identity is idS
▶ Inverse is the function inverse of a

permutations

Example
Sn := Sym(Nn)



Permutations
The Caesar cipher is one of the simplest encryption
schemes. It involves shifting the set of letters by a
fixed amount to encode a message. For example,
A 7→ D, . . . , X 7→ A, Y 7→ B, Z 7→ C . In the
context of permutations, this can be viewed as a
repeated application of the Caesar permutation by
one letters θ1. For instance, to get Caesar’s
particular cipher we use θ1 ◦ θ1 ◦ θ1 (that is
θ3

1 ∈ Sym({A, . . . , Z})). For ease of notation we
define

θn := θn
1 for n ∈ N



Permutations

Repeated applications of a permutation on a finite
group must eventually return to a previously found
value. This is known as a cycle of a permutation.



Permutations
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Has cycles
▶ 1 7→ 4 7→ 1
▶ 2 7→ 2
▶ 3 7→ 6 7→ 5 7→ 3



Permutations
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We write this as

(14)(2)(365)



Permutations

All permutations can be decomposed in this way,
and doing so gives us a unique (up to order) cycle
type of the permutation
Example
(14)(2)(365) has cycle type (2, 1, 3)



Enigma as a Permutation

Supposing we are at ground position, the Enigma
permutation E is as follows:

E = P−1α−1
1 α−1

2 α−1
3 Rα3α2α1P



Enigma as a Permutation

After n moves of the first rotor this is

En = P−1θ−1
n α−1

1 θ−1
n α−1

2 α−1
3 Rα3α2θ

−1
n α1θnP

Where θn is a shift by n letters.



Enigma as a Permutation

E = P−1α−1
1 α−1

2 α−1
3 Rα3α2α1P

= (α3α2α1P)−1R(α3α2α1P)



Enigma as a Permutation

Conjugate permutations will always have the same
cycle type



Enigma as a Permutation

An Enigma machine will always be a
permutation represented by a 13 disjoint 2
cycles



Sending Messages



When sending a message the operator was to use
the following protocol

I. The operator sets their machine to the ground
position specified by the key sheet

II. A Spruchschlüssel rotor position is chosen and
encoded twice using the Grundstellung, this is
listed

III. The message is encoded using the daily key
and the Spruchschlüssel rotor position



Demonstration



Suppose we receive a message with starting letters

ABC DEF

Given that the Spruchschlüssel was encoded twice
at ground position we know A and D, represent the
same letter in the Spruchschlüssel.



Key Distribution Vulnerability

Suppose the Spruchschlüssel is αβγ Then the
recieved message can be interpreted as

ABC DEF
E1(α)E2(β)E3(γ) E4(α)E5(β)E6(γ)

Then E4(E1(A)) = E4(α) = D



Key Distribution Vulnerability

With sufficient messages we can completely deduce
E4E1, E5E2, and E6E3. There three cycle types serve
a footprint for the initial setting E . By preparing a
catalogue of these cycle types for each ground
position, we drastically reduce our search space.



The Cyclometer



Changes to Protocol

Starting in 1940, the German’s enhanced the
security of their key distribution. Originally, the
Grundstellung rotor position was sent along with the
daily key and an operator chose a Spruchschlusse to
encode twice at the start of a message. Later
iterations of this protocol removed the
Grundstellung from key sheets entirely.



Changes to Protocol

These new key sheets contained the following
columns Tag/Datum, Walzenlage, Ringstellung,
Steckerverbindungen, and Kenngruppen



Changes to Protocol



When sending a message the operator was to use the following
protocol

I. The time at which the message was sent is listed

II. The number of parts which the message contained is
listed

III. Which message part is being sent is listed

IV. The length of the message part (not including
Buchstabenkenngruppe) is listed

V. A Grundstellung rotor position is chosen and listed

VI. A Spruchschlüssel rotor position is chosen and encoded
using the Grundstellung, this is listed

VII. The Buchstabenkenngruppe is listed

VIII. The message part encoded using the daily key and the
Spruchschlüssel position is listed



Suppose we knew the plaintext which had been
enciphered into a particular Enigma transmission.
Consider the following mapping,

D Y Y Y Y Y X Y Y Y X

A B R A C A D A B R A
1 2 3 4 5 6 7 8 9 10 11



A

D X

1

7

11



We denote the permutation represented by the
Enigma at position i as σi . Since these each use the
same plugboard we will also note the Enigma at
position i not using the plugboard as σi , that is
σi = PσiP (conversely, σi = PσiP).



σ11 ◦ σ7 ◦ σ1 = Pσ11P ◦ Pσ7P ◦ Pσ1P
= P ◦ σ11 ◦ σ7 ◦ σ1 ◦ P

We will condense this notation by defining

σ := σ11 ◦ σ7 ◦ σ1

and

σ := σ11 ◦ σ7 ◦ σ1

Then σ = PσP (conversely, σ = PσP).



Let us hypothesize that A is steckered in the
plugboard to α – that is, P(A) = α (conversely,
P(α) = A). It then follows that for a fixed i ∈ N

σi(α) = P ◦ σi ◦ P(α)
= P ◦ σi(A)
= P(A)

and so we derive

P(A) = α ⇒ P(A) = σi(α) ∀ i ∈ N



Then we have that A must be steckered to all
values in the set {σi(α) | i ∈ N}. We note that this
set is that orbit of the element α under the group
action of the subgroup ⟨σ⟩ – that is, ⟨σ⟩ · α.



By representing σ in its cycle notation we can
quickly see whether certain hypotheses are possible.
For example, suppose we found that

σ =
(ABCDEF )(GHIJK )(L)(MNOPQRSTUVWXYZ )

If we suppose that A is steckered to any element in
the cycle (ABCDEF ) we find that this element has
an orbit of length 6 in ⟨σ⟩ and thus A cannot be
steckered to any element in this cycle. Then it is
clear that A can only be steckered to L in this case.



Scanning Methods

Turing describes various methods of mechanising
the above analysis of cycle-type to determine when
we can eliminate rotor positions.



Scanning Methods

If we examine a particular hypothesis, say A is
steckered to K , we can rule out this steckering if we
find that K is not in a 1-cycle, that is if σ(K ) ̸= K .
If we mechanize this process we can eliminate rotor
positions which do not satisfy this singular
hypothesis. Turing called this method single line
scanning. Note, however, that this method may
eliminate rotor positions which do have valid
steckerings, just not the particular steckering that
we hypothesized.



Scanning Methods

If we perform single line scanning in sequence, that
is, for each steckering hypothesis, we can rule out
rotor positions which have all steckering hypotheses
invalid. Turing called this method serial scanning.



Scanning Methods

Serial scanning requires a separate examination of
each steckering. Turing proposed a machine which
could concurrently examine all steckering
possibilities and eliminate rotor positions which had
no valid steckerings. Turing called this method
simultaneous scanning.



Scanning Methods

If we find σ has a 26-cycle, then we must have that
there are no 1-cycles and thus no valid steckerings.
It then follows that the rotor position is incorrect. If
we mechanism this process we can eliminate some
rotor positions which do not have valid steckerings.
We will call this method spider scanning. Note,
however, that this method would not, for example,
detect that a 13, 13-cycle contains no valid
steckerings.



Scanning Methods
Turing explained, ”The ideal machine that
Welchman was aiming at was to reject any position
in which a certain fixed-for-the-time Stecker
hypothesis led to any direct contradiction... The
spider does more than this in one way and less in
another. It is not restricted to dealing with one
Stecker hypothesis at a time, and it does not find
all direct contradictions.”

Effectively, spider-scanning is like a form of
simultaneous scanning which is restricted to
examining only one cycle at a time.



Scanning Methods

Iterations of each scanning methods were proposed
or designed, but in the end we find that the spider
scanning method was used in the implementation of
the Bombe.
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We abstract an Enigma machine
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The Bombe

Suppose we had plaintext ciphertext pairing
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A B C
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The Bombe

If we change σ
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The Bombe

Later Welchman introduced the diagonal board
which made use of the fact that

P(X ) = Y ⇐⇒ P(Y ) = X

To allow us to connect wires Xy and Yx



The Bombe

The Machine Gun further improved the device by
eliminating stops which had the property that Xy
and Vy were both live



Turover Consideration

The Bombe assumes no turnover occurs during
encryption. For a crib of n lettters there is an n

26
chance of a turnover so we can examine parts of the
crib separately to improve the chance that we
examine a section with no turnover.



The Bombe

Demonstration
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Stops

The machine is wired to stop when σ has cycle type
other than (26). Turing only considers what he calls
normal stops during his calculation of the expected
number of stops. This is a stop which has
cycle-type (25, 1).



Stops

Consider our simple example of a loop of three
Enigmas on four letters. We might expect that
σ = σ3σ2σ1 being generated from considerably
random permutations, is itself a random
permutation. If this is the case then we would
expect that we would get a (4) cycle with a
probability of 1

4 . Then we expect the machine to
stop with probability 3

4 . With enough loops this
probability decreases exponentially and the machine
has a tractible number of stops.



Prior Work



Prior Work



Stops

However, try as we may, we can never find a
collection of Enigma permutations {σ1, σ2, σ3}
which generate a (4) cycle in σ. This is to say, in
our above arrangment, the machine will stop at
every rotor position thus making the process of
checking stops intractable.



Stops

To see why this is the case, note that each σi has
cycle type (2, 2) thus they are permutations of even
parity. On the other hand, any (4) cycle will have
odd parity. When we compose 3 even permutations
(i.e. σ3σ2σ1) we will always get an even parity
permutation, thus this resulting permutation can
never be a (4) cycle.



Stops

In the case of the Bombe, a cycle of even length
can never produce a permutation with a (26) cycle.
We can emperically observe this by simulating the
Bombe’s operation on a cycle of length 8 and we
find that every single rotor position produces a stop.



Stops

From the above it is clear that σ is certainly not a
purely random permutation, and simulations of
loops of Enigma permutations of various lengths
show that the probability distribution of these
permutations is highly dependent on the length of
the loop.



Stops (Loop Length 3)

Probability
(26,) 0.078000

(8, 9, 9) 0.001700
(8, 8, 10) 0.001700
(7, 9, 10) 0.003300
(7, 8, 11) 0.002600
(7, 7, 12) 0.002200
(6, 10, 10) 0.001800
(6, 9, 11) 0.003300
(6, 8, 12) 0.003500
(6, 7, 13) 0.004200

. . .

Table: Cycle Types and Probabilities
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