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Abstract

This thesis presents a comprehensive and chronological overview of cryptographic

techniques designed to break Enigma, beginning in 1932 and culminating in the cre-

ation of the Turing-Welchman Bombe. We discuss the mathematical theory and

electromechanical implements used to decode one of history’s greatest ciphers.

Reexamining the Bombe through the lens of modern group theory, we critique Alan

Turing’s estimation of the number of “stops” that the Bombe produces for various

plaintext-ciphertext pairing structures. To address its limitations, we introduce a

new framework for estimating the number of stops by extending John Dixon’s theo-

rem concerning the probability that uniformly distributed elements of Sn generate a

transitive subgroup. Our formulation generalizes this result to compute the probabil-

ity of transitivity when permutations are sampled from arbitrary distributions over

conjugacy classes.

All results are supported by extensive simulation, and a full suite of implementations

of various cryptographic techniques are made available via an open source repository

to provide researchers with new tools to study the methods discussed herein.
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Thesis Structure

It should be made clear that I am not a historian. As such, this thesis does not aim

to be a perfect retelling of historical narrative; rather, this thesis aims to convey a

progression of cryptographic attacks on Enigma. The thesis is structured to grad-

ually build the reader’s understanding of the various flaws in the Enigma machine,

illustrating how and why the Bombe came to take the form that it did. Historical

details are included to advance the mathematical narrative and are, to the best of my

ability, confirmed to be historically accurate.

The first chapter serves as an introduction to the Enigma machine itself. We describe

its construction, use, and cryptographic strength. We further provide mathematical

description of the machine using permutation theory.

The second chapter discusses the first cryptographic attacks on Enigma which were

employed by Polish cryptanalysts. We first discuss the reconstruction of the German

Enigma via mathematical deduction about the internal wirings of the machine. We

further discuss both manual and electromechanical methods for deducing daily keys.

The third chapter focuses on British cryptanalysis of the Enigma during the war.

While we describe a variety of methods used by Bletchley Park to deduce daily keys,

we primarily focus on the creation and construction of the Turing-Welchman Bombe.
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We rigorously describe the mathematical reasoning implicit in the machine. We fur-

ther describe extensions added to the original design of the Bombe. Finally, we de-

scribe the process by which naval Enigma messages were deciphered using the Bombe,

known as Banburismus. We describe and justify this complex system of linguistic fre-

quency analysis.

These three chapters function as an expository resource aimed at mathematically

inclined readers seeking depth and rigor regarding cryptographic attacks on Enigma.

The fourth chapter examines the mathematical model by which the Bombe’s effi-

cacy was described by Turing. We first justify Turing’s model using John Dixon’s

theorem regarding the probability that two uniformly distributed permutations in Sn

form a transitive subgroup [16]. We also present several critiques of Turing’s model

and illustrate its inability to make predictions which align with the ground-truth op-

eration of the Bombe. To remedy these issues, we present an alternative model which

closely predicts the true behavior of the Bombe. To do this, we created a generalized

version of Dixon’s Theorem 4.5 which allows for the calculation of the probability

that two permutations, pulled from a non-uniform distribution of cycle types in Sn,

form a transitive subgroup.

The final chapter discusses directions for future research on the subjects and methods

described herein. We also describe the open-source repository which is used through-

out this thesis to generate tables, calculate relevant values, and simulate both manual

and electromechanical methods of attacking Enigma.
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Academic Contributions

This thesis presents a collection of novel contributions to the study of both crypto-

graphic history and mathematics.

We present linear, rigorous, and extensive descriptions of cryptographic attacks on

Enigma. To our knowledge no such prior compilation of mathematical materials ex-

ists on the subject of Enigma of comparable scope.

We provide a unique mathematical description of the Bombe, using group-theoretic

language to formalize its electromechanical elements. This allows us to more precisely

illustrate the mathematical contradictions the Bombe uses to eliminate certain rotor

positions. This further allows us to abstract problems associated with analyzing the

Bombe to explicit problems in the field of group theory.

We devise and prove a generalization of Dixon’s Theorem. The original theorem

statement regards the probability that two uniformly distributed permutations in Sn

form a transitive subgroup [16]. We extend this theorem to allow for the calculation

of the probability that two permutations, pulled from a non-uniform distribution of

cycle types in Sn, form a transitive subgroup 4.5.

We further provide researchers with a repository of open-source tools used in the
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creation of the thesis [39]. Of particular note, we have created a simulation of the

Bombe which provides a detailed internal view of the wirings of the machine. Further,

we have provided code which allows for the construction and use of Zygalski sheets.

We additionally wrote several programs which allow for the computation of scor-

ing, distance, dummyismus, and repeat sheets used for the Banburismus procedure.

Most significantly, we implemented the generalized Dixon’s Theorem as an algorithm

in python, allowing for researchers to compute the probability of two permutations

forming a transitive subgroup pulled from an arbitrary distribution over cycle types.

Finally, we provide a script which allows researchers to quickly estimate the number

of stops we expect the Bombe to encounter for a particular menu arrangement.
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Requisite Background

The subject matter of this thesis concerns both the mathematical and mechanical

means by which the Enigma encryption scheme was broken over time.

With respect to mathematical background, the reader is expected to have an in-

troductory knowledge of abstract algebra, in particular a solid grasp of permutation

theory. Further, many topics will delve into probabilistic and combinatoric analysis

of language frequency, key spaces, and the effectiveness of various methods. For this

reason the reader is expected to have a comfortable understanding of introductory

combinatorics and Bayesian statistics.

With respect to mechanical background, the text requires limited knowledge of com-

ponents such as transistors and relays. Circuit diagrams will be used sparingly, or

will be abstracted, so as to reduce the need of an electrical engineering background.
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Introduction

While the allied armies fought tooth and nail, in trenches and tanks, for the fate of

the world, another army was amassed in the small radio factory of Bletchley Park.

Mathematicians, engineers, linguists, and chess players, armed with paper and pencil,

wire and punch-cards, took up their own battle.

Hitler’s best-kept secrets lay hidden behind a math problem. What follows is the

story of some of history’s greatest minds and their work to solve that problem. It

is a story of secrecy and spies; ingenious perspectives, laborious work, and machines

built to think faster than any human ever had.

At the center of this story is the Enigma machine, a feat of cryptography so vast

in its possible arrangements that it was thought unbreakable. Breaking it required

more than mathematical trickery; it required coordination, luck, and a cryptographic

intelligence team the likes of which the world had never seen. Winston Churchill saw

this math problem for what it was: the key to saving millions of lives. Understanding

the project’s urgency, he issued a memo demanding that the utmost attention and

resources be given to the Bletchley team. Churchill tagged this memo with a red

stamp reserved for matters of the highest priority [9, p. 336]. It read:

Action This Day

xiv



1

The Enigma

The Enigma machine was used extensively by the Germans to encipher communica-

tions prior to and throughout World War II. German stratagems like the blitzkrieg

required quick radio communication, so to ensure that the allied powers were not able

to read messages, they encoded all radio signals using the Enigma machine. Breaking

the Enigma would allow the allied powers to freely intercept and decrypt all naval, air

force, and military command – offering them time to counter, defend, and retaliate

appropriately.
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1.1 The Machine The Enigma

Section 1.1

The Machine

Figure 1.1: Enigma model I [28]

Throughout this thesis, the model I Enigma is chosen to represent our canonical ma-

chine as this was the most common version used during World War II with over 20000

being produced [10]. Further, it was used by the Heer (Army), Luftwaffe (Air Force),

and Kriegsmarine (Navy), making this a prime target for attack by cryptanalysts.

Many models existed, each with varying layouts, key spaces, and use-cases; however,

the central ideas that are discussed in this thesis can generally be adapted to work

on other models.

At its most basic function, the Enigma (once set up) is a keyboard whose letters,
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1.1 The Machine The Enigma

when depressed, illuminate bulbs of a corresponding keyboard layout. The operator

presses keys of the desired plaintext and copies the output of the illuminated bulbs

to obtain the enciphered text. The actual mechanism of this encipherment requires

several mechanical components in a complex arrangement.

1.1.1. The Plugboard

Figure 1.2: Enigma plugboard [25]

Upon a key press, the electrical current corresponding to this letter is sent to a

mechanism known as the plugboard. From an operator’s perspective, the plugboard

was a series of ports, one for each letter, along with 10 cables which could connect

these ports. When two letters are connected via a cable (e.g. A and Z), the plugboard

will send current corresponding to a letter to the opposite letter (e.g. A goes to Z

and vice versa). If no cable is plugged in to a letter (e.g. D has no cable), then the

plugboard simply will return a current corresponding to this same letter (e.g. D).

When a letter is connected to another through the plugboard, we will say that the

letters are steckered to one another. Assuming all 10 cables are used, this means

that the plugboard can be represented as a permutation on 26 letters with 21016 cycle

3



1.1 The Machine The Enigma

type1. One such permutation could be

(HR)(AT)(IW)(SK)(UY)(DF)(GV)(LJ)(BQ)(MX)(C)(E)(N)(O)(P)(Z).

In general, we will denote the permutation corresponding to a plugboard as S.

1.1.2. The Rotors

(a) Disassembled rotor [38]

(b) Enigma rotor V entry side [27]

(c) Enigma rotor V exit side [26]

Figure 1.3: Enigma rotor

1We will denote cycle types in this thesis in the format λm1
1 . . . λmk

k where λi is the length of a
cycle and mi is the multiplicity of this cycle length. We will often write the full notation 1m1 . . . nmn

in which mi may be 0.
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1.1 The Machine The Enigma

The Enigma model I used three rotors, selected from a larger set of rotors, the num-

ber of which changed depending on the military branch we examine. At a minimum,

all three branches of the military eventually had access to five rotors labeled by their

roman numeral equivalents (i.e. I, . . . , V). Each rotor encoded a unique permutation

from 26 brass input contacts to 26 brass output contacts by simply connecting each

input/output pair in the permutation with a wire as in Figure 1.3 (a)-(4,5,6). The

contacts represent the letters in alphabetical order moving in a clockwise manner

relative to the entry side of the rotor. The input contacts of the rotor were often

marked with a white dot indicating which contact corresponded to A, but in general

the A contact is found by looking at the contact immediately above the numeral indi-

cator [12]. In Figure 1.3 (b), this is the topmost contact, located directly above the

text V.

On their own, these rotors would prove to be very poor cryptographic devices, as

they are just substitution ciphers, which are vulnerable to frequency analysis and,

if found by the enemy, would serve no purpose whatsoever. Therefore, these rotors

were designed to rotate, which served to change the substitution at each stage of

encryption.

Because these rotors rotate, it is best to differentiate between contact letters and

contact positions. When we give the permutation corresponding to a rotor as in fig-

ure 1.4 we are referring to the A contact as the specific contact denoted by the marker

dot and the B contact as its next contact turning clockwise. When referred to in this

context, we will use the word “contact.” On the other hand, when we say that an

electrical current corresponding to A enters a rotor, we mean that the current enters

the contact at the topmost position of the rotor, even if the rotor has rotated now so

5



1.1 The Machine The Enigma

that that contact is not the contact with the marker dot. When referred to in this

context we will use the word “position” so as to disambiguate from the prior context.

That is to say, a contact and a position need not be the same. For example, contact

A can be in position B. This occurs when the pin with the marker dot adjacent to it

is one pin away from being at the top of the rotor.

Turnover. Each rotor had on its entry-side, a notch next to each contact as in

Figure 1.3 (b). A pawl attempted to engage the notch and move the rotor forward by

one contact each key press. On the exit-side, each rotor was equipped with a smooth

ring with only a single notch breaking it as in Figure 1.3 (c). This is known as the

turnover notch. Assuming the rotor functions in isolation the pawl will engage the

entry notches during each key press thus moving the rotor forward by one until, after

26 presses, the rotor returns to its original position. However, if we have two rotors,

say rotor M and N, such that rotor M has its entry contacts placed adjacent to the

exit contacts of rotor N; then, the smooth ring of the rotor N will occlude the notches

of rotor M thus preventing the pawl from engaging. That is, except at the location

where the turnover notch is located. The pawl will then only be able to rotate rotor

M if it aligns with the turnover notch of rotor N.

Now consider three rotors, rotors L, M, and N, arranged left to right from an op-

erator’s perspective. Then electrical current first enters rotor N, followed by rotor M,

and finally rotor L. Rotor N will have no rotor’s smooth ring occluding its notches

so the pawl is free to engage rotor N at every key press. Thus rotor N will always

turn at each press of the key. Rotor M, however, will only turn at the position at

which rotor N’s turnover notch aligns with the pawl (save for a case we will shortly

discuss), meaning that for each full rotation of rotor N, rotor M will move by one

contact. Finally, rotor L will only move when rotor M’s turnover notch is aligned

6



1.1 The Machine The Enigma

with the pawl, meaning that rotor N must make 26 full rotations before rotor L will

move by one contact.

(
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

V Z B R G I T Y U P S D N H L X A W M J Q O F E C K

)

Figure 1.4: Rotor V permutation [12]

Double Stepping. Arguably the most confusing aspect of the mechanics of the

Enigma machine is that of the double step. We just said that the each of the left

two rotors (M and L) can only be moved when the turnover notch of its right-hand

adjacent rotor (N and M respectively) is aligned with the pawl. For L this is true.

However, for rotor M , we must consider that even if rotor N ’s turnover notch is not

aligned with the pawl, rotor M ’s own turnover notch may be aligned with the pawl.

In this case, the pawl will engage and move L; however, the turnover notch is still

connected to rotor M , so when the pawl engages M ’s turnover notch it will not only

move L, but it will also move M (just from the opposite side that we might expect).

We will illustrate this effect by example. Suppose our rotors N , M , and L had

only three positions (1, 2, and 3). They will each have a turnover notch aligned

with a pawl when at position 1. We will walk through a full cycle of turnover of the

leftmost rotor L step-by-step. We have

• (Step 0) L = 2, M = 2, N = 3 – This represents our initial position

• (Step 1) L = 2, M = 2, N = 1 – Pawl engages N and steps it forward

• (Step 2) L = 2, M = 3, N = 2 – Pawl engages N and N ’s turnover notch

engages M .

7



1.1 The Machine The Enigma

• (Step 3) L = 2, M = 3, N = 3 – Pawl engages N and steps it forward

• (Step 4) L = 2, M = 3, N = 1 – Pawl engages N and steps it forward

• (Step 5) L = 2, M = 1, N = 2 – Pawl engages N and N ’s turnover notch

engages M .

• (Step 6) L = 3, M = 2, N = 3 – Pawl engages N . M ’s turnover notch engages

L but this also has the effect of rotating M as well, even though N ’s turnover

notch is not aligned. Observe that M has now moved twice in two steps, hence

the name “double step”.

From this example, we note that on an Enigma with 26 letters, the leftmost rotor

L moves every 26 · 25 steps. We might expect this to occur every 26 · 26 steps, but

because of double stepping the period is shortened.

Rotation. Consider the effect of a rotor turn on rotor V, whose internal wiring is

described in figure 1.4. In a default position in which contact A is at position A. After

pressing a key, the rotor will turn resulting in contact B now being in position A. This

means that an input current entering at position A will go into contact B, be routed

through the permutation and exit at contact Z which now is at position Y due to the

rotation. This is to say that rotating the rotor has the effect of shifting an input

letter forward by 1 (mod 26) and the output letter back by 1 (mod 26).

To encode the effect of rotation as a permutation consider

Definition 1.1. The Caesar permutation (denoted P ) is the permutation taking a

letter to the next letter in alphabetical order (mod 26). Its two-line permutation

8



1.1 The Machine The Enigma

notation is A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

 .

If we denote the permutation corresponding to rotor V in default position as η. Then

after r rotations, to get our new permutation we must first shift each input letter

forward by r and each output letter backwards by r. This can be encoded via the

Caesar permutation as follows

P−rηP r.

x It should be noted that current will only flow through the machine after the rotation

has taken place. Thus encrypting a letter with the window indicating AAA is really

going to send current through the rotors with the window indication AAB since the

rightmost rotor will turn before the encryption happens.

Outer Ring. The rotors were additionally equipped with an outer ring with letters

A to Z moving clockwise relative to the entry-side of the rotor as in Figure 1.3 (a)-(3).

Alternately some rings had numerical values ranging from 01 to 26. The outer ring

was not fixed to the underlying rotor and could be moved. Most importantly, this

outer ring is what contained the turnover notch – that is, the component in Figure 1.3

(a)-(3) was connected to the component (a)-(1). Thus, by moving the outer ring, we

change where turnover occurs relative to the internal wiring of the rotor.

To consider the effect of this ring, consider if an operator were instructed to place

the ring such that the outer ring’s 02 label was placed over contact A. Once the rotor

is closed inside the machine the operator can now only see the letters indicated by

the outer ring appearing in a small window. If he moves the ring’s label 01 to be in

9



1.1 The Machine The Enigma

the window, then contact Z is now in position A. This means that an input current

entering at position A will go into contact Z, be routed through the permutation and

exit at contact K which now is at position L due to the ring setting. This is to say

that moving the ring setting has the effect of shifting an input letter back by 1 (mod

26) and the output letter forward by 1 (mod 26). As in the prior discussion on rotor

rotation, if we denote the permutation corresponding to rotor V in default position

as η. Then shifting the ring by r letters, we get a new permutation by first shifting

each input letter backwards by r and each output letter forwards by r. This can be

encoded via the Caesar permutation as follows

P rηP−r.

In this sense, we can think of rotor rotations and ring adjustments as having inverse

effects. In fact, if we ignore turnover, setting the ring forward by r letters and then

rotating the rotor forward by r letters is equivalent to having left the ring setting and

rotor in its default position. That is to say, for cases where turnover does not occur,

the ring setting (Ringstellung) and which letter we decide to show in our window

(Grundstellung) really represent one singular component of our key space since we

can always consider our ring setting as being at A by just shifting which letter we

display in our window. However, consider that changing the ring setting also changes

where the turnover occurs relative to the internal wiring of a rotor. This means that

for rotors M and L which are affected by turnover, the ring setting does add to the

key space since it has effects which are independent of the window setting.

10
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1.1.3. The Reflector

Figure 1.5: Enigma internals illustrating reflector placement [3]

After the current travels through all three rotors, it ends up at the reflector which we

will denote R. The reflector is specially designed so that its permutation consists only

of disjoint transpositions, that is it has a 213 cycle type. This means that reflector

simply swaps letters in a set of 13 pairs.

Rather than having an entry and an exit side each with their own contacts, the

reflector has one side of contacts. Current enters at a particular contact and is routed

through the permutation back out this same side at a different contact. The reason

for this is that the reflector’s job is to send current through the exact inverse of the

process we have described up to this point. That is, after exiting the reflector, current
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travels back through the rotors (now entering at the exit contacts of the leftmost ro-

tor), travels back through the plugboard, and now ends up at a lamp light indicating

the enciphered letter.

Section 1.2

Key Size

Plugboard Setting (Steckerverbindungen). 10 plugboard wires are selected in

total. The first wire must connect 2 out of 26 letters giving us
(
26
2

)
locations this

wire can be placed. We now select a wire for the next two letters giving us
(
24
2

)
remaining locations. We continue in this fashion until having placed 9 wires leaving

us
(
8
2

)
remaining choices. In total, we have found

(
26

2

)(
24

2

)
. . .

(
8

2

)
=

26!

2! · 24!

24!

2! · 22!
. . .

8!

2! · 6!

=
26!

210 · 6!

possible wire arrangements. Of course, the order in which we select the 10 wires does

not matter so we have over-counted and must therefore divide this value by 10! wire

orderings. Therefore, we have

26!

210 · 10! · 6!

plugboard settings.

Rotor Selection (Walzenlage). From the 5 rotors in circulation, 3 rotors in some

order were needed to operate the Enigma machine. There are thus
(
5
3

)
total selections

of 3 rotors each of which can be ordered in 3! ways, giving us
(
5
3

)
· 3! possibilities.
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Ring Setting (Ringstellung). Recall that the only rotors for which the ring set-

ting actually adds to the keyspace is the 2 rightmost rotors since this setting changes

where turnover occurs and only the 2 leftmost rotors are affected by turnover. Since

each ring can be setting corresponds a letter from the 26 letter alphabet, this gives

us 262 possibilities.

Window Setting (Grundstellung). A window setting specified 3 letters from the

26 letter alphabet giving us 263 possibilities.

Reflector Selection. While there are multiple reflectors each of which saw varying

levels of usage during World War II, most machines generally stuck to a fixed reflector

known as UKW-B. Therefore, this does not factor into our key space but is worth noting

if other reflectors are being considered.

Total Key Size. Putting together all these components of an Enigma’s key settings

we derive the following expression for the total number of keys

26!

210 · 10! · 6!
·
(

5

3

)
· 3! · 262 · 263 ≈ 1.07 · 1023 ≈ 277

resulting in a roughly 77-bit key space.

With such a large key space, it seemed to the Germans that Enigma was unbreak-

able. This was an era before computers could churn through massive key spaces in a

matter of hours. Any attempt to break Enigma was going to require an attack more

intelligent than brute-forcing.

In Chapter 2, we will see how Polish cryptanalyst made use of a flaw in the Enigma

protocol, along with some clever mathematics, to construct one of the earliest at-
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tempts at breaking the cipher. To provide the requisite background, we will examine

the protocol by which German Enigma operators sent messages, as well as provide a

mathematical formalism for the machine.

Section 1.3

The Enigma Protocol

Suppose Alice and Bob are two radio operators (prior to September 15, 1938) who

want to communicate securely [30, p. 546]. Each are supplied an Enigma machine

along with a key sheet indicating the keys for a given day. The key sheet contains

the following information:

• the choice and order of rotors, known as the Walzenlage – at this point only

three rotors I, II, and III were in production [29, p. 214],

• the ring setting, known as the Ringstellung,

• the plugboard settings, known as the Steckerverbindungen – at this point only

6 jacks were used [24, p. 242],

• the window setting, known as the Grundstellung.

A key sheet at this time may have looked along these lines.

Datum Walzenlage Ringstellung Steckerverbindungen Grundstellung

31. I II III 10 14 02 BF SD AY QN LP JE VAR

30. I II III 04 25 01 UE PL AY IN QR SZ PAQ

29. I II III 13 11 06 WJ VD PO TY BL NK ZJB

...
...

...
...

...

Figure 1.6: Mock Enigma key sheet pre-1938
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1.3 The Enigma Protocol The Enigma

Alice wants to encrypt the message HELLO WORLD on the 31st of the month using the

key sheet in figure 1.6. She opens the machine and places the rotors in the machine

from left to right as I, II, III2. She then aligns the 10 indicator on the leftmost

drum to be inline with the A contact, and similarly for the remaining ring settings.

Alice now closes the machine and rotates the rotors so that they display VAR (or in

numerals 22 01 18) in the window of each rotor. Finally, Alice connects B and F in

the plugboard and similarly for the remaining plugboard settings. Alice now chooses

a random message key, this is a three letter trigram called the Spruchschlüssel. Alice

chooses her message key as LSG and is now ready to encrypt her message.

First, Alice will encrypt her message key LSG twice, producing the hexagram

MRF NZJ

Alice now sets her window setting to her message key LSG and begins enciphering her

message HELLO WORLD to produce

JYOKZ OIBGO

Alice now sends the following message to Bob

MRF NZJ JYOKZ OIBGO

Bob receives this message. He gets his key sheet and sets up his machine as the key

sheet describes for that day. He now types in the first six letters of the message to

get back Alice’s message key, which will look like

LSG LSG

We can now see why we doubly encoded the message key. If Bob did not see the same

trigram repeated twice he would know that either he or Alice set up their machine

2Prior to January 1, 1936, the sequence of rotors was only changed once a quarter [29, p. 223].
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incorrectly, or that Alice incorrectly typed in her message key. Bob could then tell

Alice to correct the message. Now equipped with Alice’s message key, Bob sets his

machine window to LSG and begins typing in the remainder of the message to recover

the plaintext

HELLO WORLD

It should be noted, the procedure described here is a facsimile of the actual pro-

cedure meant to only convey the components that are cryptographically significant.

In practice, additional information was sent alongside the message such as time of

transmission and radio station of origin. Further the message itself was to be encoded

with particular rules, for example, spaces would be denoted with X. As we discuss

changes to Enigma protocol throughout this thesis we will leave such details out.

Section 1.4

Enigma as a Permutation

Recall that from the keyboard, current will enter the plugboard (S), followed by the

rightmost rotor (N), middle rotor (M), leftmost rotor (L), and the reflector (R), only

to return through each of these components. Then at default position the Enigma

machine can be represented as a permutation

π0 := S−1N−1M−1L−1RLMNS

Additionally recall that if we ignore turnover the ring setting and window setting

effectively represent one singular setting. Then, by proper adjustment of permutations

(L, M , and N) we can consider any Enigma setting as beginning in such a state as

described by π0. Further, each subsequent key-press will bring us to a new state with
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a new permutation given by

πi := S−1P iN−1P−iM−1L−1RLMP−iNP iS

where i describes the number of times we have depressed the keyboard. Of course,

turnover does exist and does matter; however, if we are examining only the first few

letters (say l) of a message being encrypted, we have a 25
26

chance of no turnover

occurring at each step and so we have a (25
26

)l chance of no turnover occurring during

our initial stages on encryption. For small l this is a reasonably high probability. We

will see that the first Enigma code-breakers made use of this fact to simplify their

model of the machine to the above permutation πi.

1.4.1. Cycle Type

Consider the structure of the permutation πi. We have

πi = S−1P iN−1P−iM−1L−1RLMP−iNP iS

= (LMP−iNP iS)−1R(LMP−iNP iS).

That is, πi is simply the reflector permutation R pre-composed and post-composed

with a permutation and its inverse respectively. This leads us to the following defini-

tion,

Definition 1.2. Let G be a group. We say two elements a, b ∈ G are conjugate if

∃ g ∈ G s.t. a = gbg−1 [4, p. 50].

In this way, we can shorten our above observation to say that ∀ i ∈ N we have that

πi and R are conjugate permutations. This point is true regardless of turnover since

the permutations being pre-composed and post-composed with R are always inverse
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permutations. Now consider the following lemma,

Lemma 1.3. Suppose ρ = (a0 . . . ak−1) ∈ Sn
3 is a k-cycle. Then ∀ τ ∈ Sn we have

τρτ−1 is a k-cycle.

Proof. Since τ ∈ Sn is a bijection, to show how τρτ−1 acts on {1, . . . , n} it suffices

to show how it acts on {τ(1), . . . , τ(n)}. We consider how τρτ−1 acts on elements of

the form τ(ai) for a fixed i ∈ {0, . . . , k − 1}.

τ(a0 . . . ak−1)τ
−1(τ(ai)) = τ(a0 . . . ak−1)(ai)

= τ(a(i+1) mod k)

Then we know τρτ−1 contains the cycle (τ(a0) . . . τ(ak−1)). Further, if τρτ−1 acts on

the remaining elements τ(x) where x ∈ NN − {a0, . . . , ak−1}. Then we have

τ(a0 . . . ak−1)τ
−1(τ(x)) = τ(a0 . . . ak−1)(x)

= τ(x)

Meaning τρτ−1 acts as the identity on τ(x). From this we can deduce that τρτ−1’s

cycle decomposition consists of a single cycle of length k.

This lemma leads us to the following theorem that will be of deep relevance for the

remainder of the thesis.

Theorem 1.4. ∀ α, β ∈ Sn we have

3The symmetric group on n elements.
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α and β are conjugates ⇐⇒ α and β have the same cycle type [17, p. 126].

Proof.

⇒) Suppose ∃ τ ∈ Sn s.t. α = τβτ−1. β has some cycle type 1m1 . . . nmn . We can

decompose β into disjoint cycles βi,j for i ∈ Nn and j ∈ Nmi
. That is, there are mi

cycles βi,j of length i. We then have,

α = τβτ−1

= τ
(
β1,1 . . . β1,m1 . . . βn,1 . . . βn,mn

)
τ−1

= τβ1,1(τ
−1τ) . . . (τ−1τ)β1,m1(τ

−1τ) . . . (τ−1τ)βn,1(τ
−1τ) . . . (τ−1τ)βn,mnτ

−1

= (τβ1,1τ
−1) . . . (τβ1,m1τ

−1) . . . (τβn,1τ
−1) . . . (τβn,mnτ

−1)

∀ i ∈ Nn and j ∈ Nmi
we have that βi,j is a cycle of length i so by Lemma 1.3 we

have that τβi,jτ
−1 is an i cycle.

Then to show α has cycle type 1m1 . . . nmn we need only show that each τβr,xτ
−1

and τβs,yτ
−1 are disjoint ∀ r, s ∈ Nn and x ∈ Nmr , y ∈ Nms with (r, x) ̸= (s, y).

Suppose not, that is τβr,xτ
−1 and τβs,yτ

−1 act non-fixedly on the same element. We

write βr,x as (a0 . . . ar−1) and βs,y as (b0 . . . bs−1). These two cycles are disjoint as they

are independent cycles in the disjoint cycle decomposition. Then ∀ p ∈ {0, . . . , r− 1}

and q ∈ {0, . . . , s− 1} we have that ap ̸= bq. We have from Lemma 1.3 that

τβr,xτ
−1 = (τ(a0) . . . τ(ar−1))

τβr,yτ
−1 = (τ(b0) . . . τ(bs−1))

By supposition there must ∃ τ(ap) = τ(bq); However, we know ap ̸= bq and τ is an
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injection resulting in a contradiction. Then α has cycle type 1m1 . . . nmn .

⇐) Suppose α and β both have cycle type 1m1 . . . nmn . Then we can write α and β

as cycle decompositions into mi cycles of length i as,

α =
n∏

i=1

mi∏
j=1

αi,j

β =
n∏

i=1

mi∏
j=1

βi,j

For i ∈ Nn and j ∈ Nmi
, we can denote

αi,j = (a
(i,j)
0 . . . a

(i,j)
i−1 )

βi,j = (b
(i,j)
0 . . . b

(i,j)
i−1 )

Then we define τ : Nn → Nn by

τ(b
(i,j)
k ) = a

(i,j)
k

for any valid indices i ∈ Nn, j ∈ Nmi
, and k ∈ {0, . . . , i−1}. We claim that α = τβτ−1.

We consider τβτ−1’s action on some a
(i,j)
k ∈ Nn. Note that a

(i,j)
k lies in some cycle of

length i and by construction b
(i,j)
k also lies in a cycle of length i.

τβτ−1(a
(i,j)
k ) = τβτ−1(τ(b

(i,j)
k ))

= τβ(b
(i,j)
k )

= τ(b
(i,j)
(k+1) mod i)

= a
(i,j)
(k+1) mod i

= α(a
(i,j)
k )
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Since this is true for all a
(i,j)
k and this covers all of Nn, then we have α = τβτ−1 and

α and β are conjugates.

Corollary 1.5. Given α and β of the same cycle type 1m1 . . . nmn, there are

n∏
i=1

imimi!

permutations which conjugate α to β.

Proof. We have seen via the above proof that permutations with conjugate α to β

consist of mappings between the cycles of α and β when cycles of the same length

are written one over the other. Of course, we can reorder the cycles of length i in mi!

ways. Further, for each i cycle (of which there are mi) we can shift each element up to

i times to get the same permutation. This gives imi possible shifts of all i cycles.

This further gives us that,

Corollary 1.6. There are

n!∏n
i=1 i

mimi!

permutations with the cycle type 1m1 . . . nmn.

Proof. Let α be any fixed permutation with cycle type 1m1 . . . nmn . Every permuta-

tion with this cycle type is a conjugate of α. So, the number of such permutations is

equal to the number of distinct conjugates of α.

Every permutation σ ∈ Sn gives a conjugate σασ−1. However, different σ can produce

the same permutation after conjugation. For two permutations σ and ρ to produce
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the same permutation after conjugating α we must have

σασ−1 = ραρ−1

⇒ α = σ−1ραρ−1σ

In other words, ρ−1σ must conjugate α to α

From the previous corollary, we know there are

n∏
i=1

imimi!

permutations conjugating α to α.

Then number of distinct conjugates of α — and therefore the number of permutations

with the same cycle type — is

n!∏n
i=1 i

mimi!
.

Returning to the Enigma, recall that at any fixed position of the Enigma machine, the

permutation describing this position πi is just a conjugate of the reflector permutation

R. As the reflector permutation R has a cycle type of 213 it must then be the case

by Theorem 1.4 that at any given position the Enigma machine is simply a 213 cycle.

This gives two key properties at any given fixed position:

(1) The Enigma is an involution, meaning that πi(πi(x)) = x. This is actually a

desired and arguably necessary property for the Enigma to work since we need

to ensure that, when two machines are at the same position, a cipher letter

πi(x) will decrypt to its plaintext counterpart x.
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(2) The Enigma has no fixed points. Since πi is composed of 13 disjoint transpo-

sitions, we can never have a letter x for which πi(x) = x. Therefore, we will

never see a letter encrypted to itself. This means that for any setting, repeat-

edly pressing a letter (e.g. A) on an Enigma machine will never produce the

same letter (e.g. A) on the output bulbs.
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2

Bomba Kryptologiczna

In the early 1930s, Polish cryptographer and mathematician Marian Rejewski had

arguably the most difficult task in the process of breaking the Enigma. Not only did

he need to determine a means to recover daily keys from limited intelligence supplied

by a German spy but he additionally needed to recover the wirings of the rotors

themselves and reproduce the Enigma machine being used by the Germans.

Section 2.1

Intelligence

Hans-Thilo Schmidt (codenamed Asché) was a German spy who worked at their

cryptographic headquarters and provided integral documents to the French regarding

the Enigma machine. On November 8, 1931, Schmidt made an exchange with French

spy Rodolphe Lemoine (codenamed Rex). For 10,000 German marks, Asché allowed

Rex to photograph two documents [24, pp. 16–21] [33, pp. 144–146]:

(1) Gebrauchsanweisung für die Chiriermaschine Enigma – Instructions for using

the Enigma machine.

(2) Schlüsselanleitung für die Chiriermaschine Enigma – A manual which details
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the actual encryption procedure for writing messages. This procedure is the

same as that described in Section 1.3.

These documents did not contain any explicit wirings of rotors but they did illustrate

how various machine settings were employed in practice. The Poles had an agreement

with the French regarding military cooperation and thus these documents made their

way to the Polish Cipher Bureau.

The head of the Polish Cipher Bureau, Karol Gwido Langer, continued to receive

information from the French via their informant Asché. In fact, through Asché,

Langer had received key sheets which totaled 38 months worth of daily keys. With

these keys, there was no necessity for using cryptographic techniques to break the en-

cryption, as operators could simply use the keys to decrypt traffic. However, Langer

knew that war was looming and there would soon come a time where such information

would become unavailable. He made the bold decision to keep these key sheets from

cryptographers at the Bureau, knowing that without them, cryptographers would be

forced to work out a means of deriving the daily keys, not through intelligence, but

through cryptanalysis [33, p. 157].

Section 2.2

Characteristics

We will see that purely with knowledge of this procedure and some military intelli-

gence, Rejewski was able to determine the rotor wirings necessary to make further

cryptanalysis possible.

Consider the first six letters transmitted according to our encryption procedure out-

lined in Section 1.3. Operator Alice has some three letter private key (say XYZ) which
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she encodes twice with the machine settings specified by her key sheet. This will give

us six encrypted letters π1(X)π2(Y)π3(Z)π4(X)π5(Y)π6(Z). Suppose these six letters are

given as

ABC DEF

That is

π1(X) = A

π2(Y) = B

π3(Z) = C

π4(X) = D

π5(Y) = E

π6(Z) = F

Since each πi is represented by 13 disjoint transpositions we can deduce, for example,

that

π1π4(D) = π1(X) = A.

With a sufficient set of hexagrams from gathered messages, we could then fully deduce

the permutation π1π4. Further, we could recover π2π5 and π3π6. Rejewski referred to

these paired permutations πiπi+3, as characteristics [30, p. 217]. In practice, such

recovered characteristics may look like

π1π4 = (DVPFKXGZYO)(EIJMUNQLHT)(BC)(RW)(A)(S) (2.1)

π2π5 = (BLFQUEOUM)(HJPSWIZRN)(AXT)(CGY)(D)(K) (2.2)

π3π6 = (ABVIKTJGFCQNY)(DUZREHLXWPSMO). (2.3)
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Rejewski noted a key structural similarity between all such characteristics recovered

in this fashion: in each characteristic, cycles of the same length appear in pairs.

To see why this happens, consider the following lemma,

Lemma 2.1. Suppose (αβ) appears in πi for i ∈ {1, 2, 3}. Then α and β will appear

in disjoint cycles of πiπi+3 of equal length [29, p. 550].

Proof. We begin by noting that if (αβ) is in πi+3 then π contains fixed points at α

and β and our claim is true. Then without loss of generality we can arrange πi and

πi+3 (non-exhaustively) in the following way:

πi πi+3

(αβ) (βx1)

(x1x2) (x2x3)

...
...

(xk−1xk) (xkα)

Then the product πiπi+3 will contain the cycles

(αx1x3 . . . xk−1)(xkxk−2 . . . x2β)

and thus α and β end up in disjoint cycles of equal length.

This lemma has several consequences:

(1) A characteristic like π1π4, seen in 2.1, which has two singletons A and S must

have that both π1 and π4 share the transposition (AS).

(2) A characteristic like π3π6, seen in 2.2, (two disjoint 13 cycles) reduces the space

of possible π3’s to just 13 permutations which will take the form
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(AD)(BO)(VM) . . . (YU)

(AU)(BD)(VO) . . . (YZ)

...

(AO)(BM)(VS) . . . (YD)

and similarly for π6.

Thus with absolutely no knowledge of the rotor wirings or the daily key, we can

already tractably compute a searchable space of πi’s. To determine which πi is the

correct one, we make use of the most prevalent bug in cryptography – operator error.

2.2.1. Cillies

Enigma operators were instructed to construct random trigrams for their message keys

– likely to prevent frequency analysis attacks on the hexagrams beginning messages;

However, operators often chose the same trigrams for each message. Some examples

might include:

• Initials or first letters of the operator’s spouse. For example, CIL perhaps de-

riving from the name “Cecelia” being shortened to “cillie”. Allegedly, for this

reason, poor selections of trigrams from operators became known as cillies [8,

p. 143].

• The same letter encoded three times such as JJJ. These were ultimately pro-

hibited in 1933 [24, p. 241].

• Letters forming trigrams on the Enigma keyboard such as ASD and PYX. These

were also later prohibited [24, p. 241].

By keeping track of various radio stations which used cillies, Rejewski had a reasonable

guess as to what the message key used for a particular ciphertext was. Suppose we
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received three hexagrams originating from a radio station which often used AAA as

their message key:

SUG SMF

SJM SPO

SYX SCW.

We can then compare these message keys against our possibilities for each πi to

determine if AAA could have, in fact, been used to encipher these hexagrams. For

example, in the the first hexagram we see that G appears as the third letter. We

suspect our radio operator is using AAA as their message key, so this would mean

π3 contains the transposition (AG). However, in π3π6, A and G lie in the same cycle

which would contradict Lemma 2.1. Thus we know that the first hexagram does

not encode the message key AAA. In order for a hexagram to encode AAA we require

that each letter does not appear in the same cycle as A corresponding characteristic

πiπi+3, but does appear in a cycle of equal length to the cycle containing A. With this

set strict of requirements, we can deduce that the third hexagram was most likely an

enciphering of the repeated letter J since the first two cannot encode this message key.

If our hypothesis is correct and SYX SCW is actually an enciphering of AAA AAA, we

significantly reduce our space of possible πis. For example, in our case, such a hy-

pothesis would completely determine which π3 was used. We know π3 contains the

transposition (AX) and only one such possible π3 contains this transposition, specifi-

cally,

π3 = (AX)(BL)(VH)(IE)(KR)(TZ)(JU)(GD)(FO)(FM)(CS)(QP)(NP)(YW).

Similarly we can determine π6. For the remaining πis we are only left with a small,

searchable set of options.

29



2.3 Recovering the Rotor Wirings Bomba Kryptologiczna

Trying our reduced set of possible πis on hexagrams from other radio stations sus-

pected of using cillies we can find the most likely πis. For example, if we use our set

of possible πis and find that for a particular choice of πi and a particular hexagram,

we decode PPP PPP, we have strong reason to believe that this is the correct choice of

πis. In this way, we can recover each πi and thus recover any transmission’s message

key – all without any knowledge of internal wirings, plugboard settings, or daily keys.

Section 2.3

Recovering the Rotor Wirings

Equipped with a means to determine each day’s πis, Rejewski set himself to finding

the internal wirings of the rotors [30, pp. 219–221]. The full recovery of rotor wirings

and turnovers is out of scope of this thesis; however, we will provide a brief descrip-

tion to illustrate that with minimal intelligence information, entire rotor wirings were

able to be deduced.

To perform this deduction we will assume no turnover occurs in the first six let-

ters which, as we have discussed, is a reasonably likely assumption. We begin by

expanding πi to

πi = S−1P−(x+i)N−1P x+iM−1L−1RLMP−(x+i)NP x+iS

where x accounts for the initial starting position of the rightmost rotor. Since turnover

does not occur, M−1L−1RLM does not change between πis. Thus, we will denote

this permutation Q, simplifying our earlier expression to

πi = S−1P−(x+i)N−1P x+iQP−(x+i)NP x+iS
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Rejewski knew the plugboard settings for two whole months, so he began shifting

knowns and unknowns to opposite sides. Shifting things around gives us

πi = S−1P−(x+i)N−1P x+iQP−(x+i)NP x+iS

⇒ SπiS
−1 = P−(x+i)N−1P x+iQP−(x+i)NP x+i

⇒ P (x+i)SπiS
−1P−(x+i) = N−1P x+iQP−(x+i)N

To further simplify notation we will then define ρi := P (x+i)SπiS
−1P−(x+i). Then we

have now have

ρi = N−1P x+iQP−(x+i)N

where ρis are known from the deduction of πi and the key sheets Rejewski had access

to. We will now eliminate this equation’s dependence on Q by considering pairs of ρi

and ρi+1

ρiρi+1 = N−1P x+iQP−(x+i)NN−1P x+i+1QP−(x+i+1)N

= N−1P x+iQP−(x+i)P x+i+1QP−(x+i+1)N

= N−1P x+iQPQP−(x+i+1)N

= N−1P x+i(QPQP−1)P−x+iN
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Each ρiρi+1 shares the common sub-expression QPQP−1. We can eliminate this

sub-expression by noting

ρi+1ρi+2 = N−1P x+i+1(QPQP−1)P−x+i+1N

= N−1P x+i+1(P−(x+i)NN−1P x+i)(QPQP−1)(P−(x+i)NN−1P x+i)P−x+i+1N

= N−1P x+i+1P−(x+i)N(N−1P x+iQPQP−1P−(x+i)N)N−1P x+iP−x+i+1N

= N−1P x+i+1P−(x+i)N(ρiρi+1)N
−1P x+iP−x+i+1N

= N−1P−1N(ρiρi+1)N
−1PN

We now have a relationship between each ρiρi+1 and ρi+1ρi+2 by conjugating by

N−1PN . Now recall from Theorem 1.5 that if ρiρi+1 has a reasonably large cycle

structure, then there are only a limited number of possible permutations for N−1PN .

The relationship between ρi+1ρi+2 and ρi+2ρi+3 will further reduce these possibilities

since, of course, N−1PN must be the same between these two relationships. Eventu-

ally we will be left with sufficiently few choices of N−1PN that we can fully deduce

this permutation.

Let κ = N−1PN . We now want to deduce N . We have that P = NκN−1. By

Theorem 1.5 there are only 26 possible permutations for N−1, and thus for N , which

take κ to P via conjugation. These 26 candidates for N correspond to the 26 possible

orientations of a single fixed wiring – that is, each represents the same rotor wiring

with the entry side rotated by one position. Regardless of which we choose, we re-

cover, up to some rotation of the entry side of the rotor, the wiring of the rightmost

rotor. With a known key, we can easily brute-force these possible orientations to

determine the true rightmost rotor wiring.
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In a similar fashion, we can recover the remaining rotor wirings though often with the

help of other mathematical tricks, not to mention military intelligence and luck. From

this point forward, we assume that the cryptanalyst now has access to the wirings of

all the rotors as well as the reflector.

Section 2.4

The Grill Method

We now have deduced all of the rotor permutations N , M , L, R, as well as each πi

for a given day. We will use this information to recover the daily keys.

For the moment, let us assume S is the identity permutation. Then rearranging

πi we get

Q = P−(x+i)NP x+iπiP
−(x+i)N−1P x+i (2.4)

Since Q must be the same for each such equation involving πi, we will devise a manual

means to deduce the correct starting position by find a value of x which produces a

consistent permutation Q across all i ∈ {1, . . . , 6}. We can pre-compute N , P−1NP ,

. . . , P 4NP−4 and arrange them in a large sheet of rows called the bottom sheet.

Then, for each πi, we write it out on a separate line with a blank row (a slit) beneath

it to allow for alignment with a row of the bottom sheet. This forms the top sheet.
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We will illustrate this for π1 and denote the slit beneath with periods.

|ABCDEFGHIJKLMNOPQRSTUVWXYZ|

π1 |SRWIVHNFDOLKYGJTXBAPZECQMU|

|..........................|

By sliding the bottom sheet beneath the top sheet we can test various values of

P−kNP k to see what values of Q they give. For example, for k = 0 we have

|ABCDEFGHIJKLMNOPQRSTUVWXYZ|

π1 |SRWIVHNFDOLKYGJTXBAPZECQMU|

P−kNP k |KJPZYDTIOHXCSGUBRNWFMVEQLA|

We know that Q(A) = (P−kNP k)πi(P
−kNP k)−1(A). Therefore to compute Q(A) we

first begin at A in our bottom row to find that (P−kNP k)−1(A) = Z. We now map

Z through πi by finding Z on the top row and seeing where it lands in the middle

row, thus giving πi(P
−kNP k)−1(A) = U. Finally, we see where (P−kNP k) maps U by

finding U on the top row and seeing where it lands in the bottom row, thus giving

Q(A) = (P−kNP k)πi(P
−kNP k)−1(A) = M. Thus for π1 and k = 0 we get that

Q = (AM)(BF)(CX)(DI)(EP)(GT)(HU)(JN)(KW)(LS)(OZ)(QR)(VY)

Continuing in this fashion, we can get candidate Qs generated

(P−1NP 1)π2(P
−2NP 2)−1, . . . (P−5NP 5)π6(P

−5NP 5)−1
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2.4.1. Recovering the Rotor Position and Order

Recall that Q must be consistent between each equation 2.4. To check this, we can

simply construct our top sheet such that all six permutations πi are written in a

vertical stack, each with a slit beneath it. We slide the bottom sheet behind them

corresponding to a hypothesis starting position x. Aligning each πi with a possible

P−(x+i)NP x+i, we recover the resulting Q for each row. If the computed Qs are

consistent across all six πi, we have identified the correct value of x and hence the

starting position of the rightmost rotor.

If S were truly the identity then we would ultimately find an offset of the bottom sheet

that generates identical Qs for each πi. Of course, S will not be the identity. Thus,

instead of looking for perfect consistency between each Q we are only looking for

relative consistency between each Q where perhaps a majority of letters are mapped

identically. The offset where we find the most consistency between the recovered Qs

will give us a likely candidate for the value of x and thus the absolute position of the

rightmost rotor.

Further, we can deduce with reasonable certainty the value of the Q by just con-

sidering where the majority of the Qs map A, B, and so on. At this time, very few

letters were steckered, so most letters will be mapped without plugboard involvement

whatsoever. Thus, with six candidates for Q we are likely to find that, for a given

letter, most Qs map this letter consistently. This mapping is likely the true mapping

of Q with no plugboard involvement.

Letters where these Qs fail to line up should correspond to which letters are steckered.

We can potentially even recover some of the steckerings themselves by seeing where
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we expect Q to map a letter and comparing this to where it actually mapped a letter

for a particular πi.

Such a method was called the grill method [30, pp. 221–222] and required tedious

work and had many possibilities for mistakes; however, if done correctly, it could

recover the absolute position of the rightmost rotor, the permutation Q, and some

steckerings of the plugboard.

To determine the absolute positions and ordering of the remaining two rotors we

can simply enumerate all 262 = 676 positions of the left two rotors, for each of the

two possible orderings of these rotors, until Q is produced. In practice, a catalogue

was eventually compiled which associated each Q to a corresponding position and

ordering of the left two rotors. Now equipped with each absolute rotor position, we

still must determine the ring settings.

2.4.2. Recovering the Ring Setting

To determine the ring settings, we make use of another operator error. Often messages

began with the letters ANX1 which is the German word “to” along with X denoting a

space [30, p. 223]. We could therefore set the ring setting to a fixed setting AAA (or

(01, 01, 01)) and then brute force all 263 possible rotor positions until the first letters

in the deciphered message were ANX. Once we knew the absolute position at which

this occurred, along with the message key, we can immediately determine what the

ring settings must have been to produce this message.

1This practice was prohibited past 1940 by forcing messages to begin with a random word [24,
p. 244].
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To see this, suppose we observe that at a window setting of (a, b, c)2 we decipher

our desired trigram ANX. Our fixed ring setting was (01, 01, 01). Our goal is to find

the ring setting which, when paired with the actual message key position of (x, y, z),

still produces the desired trigram. In order to maintain our permutation that pro-

duces the observed trigram, we need to ensure that as we change the window setting

to correspond with the message key we correctly change the ring setting so as not

to affect the permutation. Recall that the permutation of a rotor will not change if

the ring setting and window setting change identically. That is, without turnover,

moving the ring setting forward by k steps and moving the window setting forward

by k steps will not change our permutation. Since our goal is to change our window

setting from (a, b, c) back to the actual message key (x, y, z), we must change our

window setting back by a displacement of

((a− x) mod 26, (b− y) mod 26, (c− z) mod 26)

Thus to get the value of the true ring setting, we compute

(01− (a− x) mod 26, 01− (b− y) mod 26, 01− (c− z) mod 26).

This technique of fixing a ring setting and then computing the true ring setting

needed to maintain a desired permutation while matching a desired window setting

is used repeatedly throughout this thesis. We have chosen to provide a full expla-

nation each time it becomes relevant, as understanding this technique is critical to

understanding the Bombe which is our ultimate goal.

2We will often denote rotor positions as 3-vectors whose first coordinate represents the leftmost
rotors position from 1 to 26 and each subsequent coordinates represents the next rotor to the right.
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2.4.3. Recovering the Plugboard

With the ring setting, rotor position, rotor order, and some of the steckerings of

the plugboard, we can easily determine any remaining steckerings by deciphering

messages and finding German words in which a letter is swapped. By looking for

consistent patterns of letter swaps within common German words, the full plugboard

configuration can be uncovered. With that, the cryptanalyst is now able to recover

the full daily key.

One key point regarding the grill method is that at the time when it was in use only

6 jacks were used in the plugboard. This means that the Qs generated by each πi

were relatively similar since the permutation S had less impact on average. However,

the Germans eventually used up to 10 jacks making the grill method infeasible, since

we can no longer confidently determine the true value of Q [24, pp. 237, 242]. This

fact will later necessitate the development of an additional tool called the Bomba,

later discussed in this chapter.

Section 2.5

The Clock Method

At this point Rejewski and his team were able to recover daily keys, but the above

methods are extremely slow and inefficient. Many optimizations were made over the

years. We will now examine one particular optimization.

While we do know the wirings of the rotors, we do not know when we begin our

cryptanalysis what the order of these rotors were. At the time there were only three

rotors in use (I, II, III) so one could simply try all 3 rotors as the rightmost one and

repeat the above analysis. Of course, this makes the above method 3 times slower. In
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practice, early Enigma daily keys kept rotor positions the same for an entire 3 month

period meaning this analysis did not need to be done too frequently.

However, Jerzy Różycki worked out an efficient method to determine the rightmost

rotor which he called the clock method [30, p. 223]. The clock method attempted

to determine where the turnover notch was for the rightmost rotor. From this we

could immediately determine which of the three rotors was used.

2.5.1. Index of Coincidence

In a string of random text from a 26 letter alphabet we get a uniform distribution

of letters. Thus we expect each letter to appear with a 1
26

probability. When we

align two pieces of random text, it then follows that we expect 1 letter to match up

between the two pieces of texts every 26 letters. However, text which encodes a lan-

guage does not generate a uniform distribution. Distributions for various languages

have been well studied and are the information needed for frequency analysis. Having

a non-uniform distribution also implies that when we align two pieces of text which

encode a language, the chance that a letter from the first piece of text will align at

the same position with a letter from the second piece of text is non-uniform. This

distribution is called the index of coincidence. In particular, for German, we find

that the expected number of alignments (called coincidences) between two pieces

of text 26 letters long is 2.05 [20, p. 5-3]3. If these texts are enciphered with the

same poly-alphabetic cipher, we expect to see the same distribution of coincidences.

If they are enciphered with different poly-alphabetic ciphers, we expect to return to

a uniform distribution.

3It should be noted that this data is from 1952 whereas the index of coincidence that was being
used for German at this time seems to be roughly 26

17 .
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To make use of this property, we can select two messages with message keys (de-

termined as in Section 2.2.1) whose first two letters coincide (e.g. QKA and QKJ). This

means that both messages were encoded with the only difference being in their right-

most rotor. If at some point during encoding the first message, its rotors align with

the rotors used to encode the second message, we would expect to see the number of

coincidences between the messages to suddenly spike. In this way, we can detect when

the two messages have their rotors align. This does not work, however, if turnover

occurs. In that case, one of the middle rotors will step meaning that the messages

will not align in their rotor positions and we will see a random distribution of coinci-

dences. If we align the message generated by QKJ on top of the message generated by

QKA, we can slide the bottom message until it is 17 positions (10− 1 mod 26) further

than the top message,

QKJ: MDIJVZOMRJYNXTHLXHMMWGYDQJQKPBEOQWZOAGSVDUXAWCDNQBVPFCLEOCOUYPBGFSHKQJDYUCWBCU

QKA: NAZDCRRCHGUJBWOCHOJHXORLPZDKQOHDXEXJSUEIRFRFSWODSPSFAYGOQWKCN

at the point where they line up, we would expect the texts to both be encoded by

QKB4 and the number of coincidences (indicated by ) should spike as we see in the

above diagram. Given that this occurred, this means turnover did not occur between

the rightmost window displaying J and A. This, for example, eliminates rotor I as a

candidate since its turnover occurs when Q is displayed in the window. Similarly, we

can eliminate rotor III since its turnover occurs when V is displayed in the window.

This leaves only rotor II with its turnover occurring when E is displayed in the win-

dow. With just two messages we can determine a likely candidate for the rightmost

rotor being used that day. With more such message pairs, we strengthen our certainty

that a particular rotor is being used as the rightmost rotor.

4We might expect this to be QKA but recall that the rotors move first before encipherment.
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The clock method was a precursor to a method we will discuss later known as Ban-

burismus. The important takeaway is that, while language frequency analysis may not

be strong enough to decode Enigma messages, it may be strong enough to determine

elements of the key like rotor choice or ordering.

Section 2.6

The Cyclometer

These manual methods of decryption became increasingly difficult as German oper-

ators were instructed to use more plugboard jacks and increased the rate at which

daily keys changed. Rejewski wanted to produce a mechanical means of performing

a similar deduction. He returned to the characteristics associated with a particular

day’s key as in Section 2.2. He noticed that the cycle structure of a characteristic did

not regularly repeat (if at all). Then we perhaps could create a “fingerprint” of a key

by noting the cycle structure of all three characteristics associated to the key. Now

that Rejewski had the internal rotor wirings, he could build a machine that could

immediately produce the cycle structure of characteristics for a given setting. This

machine was dubbed the cyclometer [30, pp. 224–225].

Let us first understand the manual implementation of such a deduction. Assum-

ing an identity plugboard S, we can use our internal rotor wirings to know the exact

permutation π1 and π4 for any initial rotor position. In specific, suppose we have

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

P T K X R Z Q S W M C O J Y L A G E H B V U I D N F


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π1

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

J W V R O S U Y Z A T Q X P E N L D F K G C B M H I


π4

Then to find the cycle type of π1π4 we might do the following. We begin with A.

We first run A through π4 to get J. We then run J through π1 to get M. Thus we see

π1π4(A) = M. Now we could continue with M sending it back into π4,. Eventually after

jumping back and forth between π1 and π4 we we will have encountered all letters

contained in the same cycle as A. We do, however, encounter some other letters as

well. This method is effectively the same method used in lemma 2.1 to find the two

disjoint cycles of equal length produced in a characteristic. In fact, by switching back

and forth between π1 and π4 we will find alternating elements of the pair of cycles of

equal length which contain A. We can mechanize this process via the following circuit5

Qy,x Nz Nz+3 Qy,x

A

B

C

D

In this circuit Nz represents the rightmost rotor at some position z and Qy,x repre-

sents our fictitious rotor (consisting of M , L, and R) at a fixed position y and x –

we will denote this position (x, y, z). Note that right hand rotor in the permutation

5Throughout this thesis, diagrams will represent a simplified Enigma machine consisting of only
four letters (A,B, C, and D):
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depicted on the right is 3 steps further than the right hand rotor depicted on the left.

When we now apply a current at A the current will travel back and forth through

N−1
z Qy,xNz and N−1

z+3Qy,xNz+3 and reach all the letters contained in the pair of cycles

of equal length which contain A, that is, the number of wires electrified is double the

length of the cycle containing A. If we connect each wire to a bulb, we can count

the number of illuminated bulbs and quickly determine the length of the cycles in

the permutation π1π4 at any given position of rotors (x, y, z). We can now rotate

through all 263 positions of the rotors and create a catalogue of all characteristics

π1π3 (note that π2π5 and π3π6 can be retrieved by just looking at the next two cat-

alogue entries). We must also consider all 6 orderings of rotors I, II, and III. Thus

we can laboriously generate a catalogue of all rotor orders and settings consisting of

6 · 263 = 105456 entries.

Now equipped with this catalogue, the cryptanalyst could use the traffic from a given

day to determine the characteristics (π1π3, π2π5, and π3π6) as in Section 2.2, look

up the cycle types in the catalogue, and immediately determine the rotor order and

absolute rotor positions.

The plugboard settings could then be determined by comparing the characteristics

recovered from that day’s Enigma traffic, against the characteristics generated by the

discovered rotor positions with no plugboard jacks inserted.

Finally, the ring position could be recovered as in Section 2.4.2 before by using known

plaintext from the message.

This ultimately reduced the time to find a day’s settings to roughly 15 minutes [30,
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p. 225]. Note that the machine made finding cycles in permutations instantaneous

by connecting each cycle in its own disjoint electrical circuit. This first attempt at

mechanizing the process of decryption is a very early predecessor to the primary topic

of this thesis, the Bombe. This method of enumerating cycles, as we will see, is the

core of the Bombe’s primary function.

Section 2.7

The Bomba

As mentioned prior, the addition of plugboard jacks made the grill method infeasi-

ble. Further, beginning on September 15, 1938, the German military changed the

protocol by which Enigma messages were encoded, making both the grill method and

cyclometer completely obsolete [31] [24, pp. 237, 244]. A new means of fingerprinting

messages outside of characteristics needed to be developed. Further, compared to

the grill method, such a new method would need to account for the fact that the

plugboard swapped many more letters.

2.7.1. Changes to the Enigma Protocol

Starting in 1938, the German key sheets began removing an explicit window setting

(Grundstellung) and added an indicator group known as the Kenngruppen. The in-

dicator group was an extra identification added to messages to note which key was

being used. It serves no cryptographic purpose so we will just discuss the way in

which the message key was obtained.

Operators were now instructed to choose a random window setting (Grundstellung)

for each message. The operator then sent this window setting in plaintext and pro-

ceeded to encode their message key (Spruchschlüssel) twice, enciphered with the
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chosen window setting [30, p. 225–226].

On first view, this method seems to be more insecure than the previous method

since we openly broadcast our window setting. However, because the window setting

now changes between each message sequence, the cryptanalyst will never find enough

messages with the same window setting to produce a set of characteristics needed for

the cyclometer. Even with the window setting the cryptanalyst still knows nothing

of the ring setting, plugboard setting, rotor position, or rotor order.

2.7.2. Females

Rejewski noticed that, given enough cipher material, we could find three messages

with the following form seen below:

Grundstellung Spruchschlüssel

RTJ WAH WIK

HPN RAW KTW

DQY DWJ MWR

Notice that the first message has the letter W in both its first and fourth position.

Cryptanalysts referred to such coincidences at a distance of three letters by the term

females [24, p. 296] and to denote its location we could say this is a 1−4 female. The

second and third message also contain females, specifically 3 − 6 and 2 − 5 females

respectively. In order for a daily key to be correct, it must produce females at the

noted locations for the specified window setting. It turns out that such a set of females

is a sufficiently unique “fingerprint” to reduce the number of possible rotor positions

to a tractable number with which we can recover the daily key.
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2.7.3. Bomba Kryptologiczna

We will first produce a mechanical means of detecting when three Enigma machines

produce females at given locations – such a machine became known as the Bomba

Kryptologiczna (Bomba for short). Let us begin by constructing a device that can

detect a a single female, that is, it can determine for a given input letter when two

sets of rotors three steps apart produce a female.

In this thesis, diagrams for the Cyclometer and the Bombe (later discussed) are

abstracted so as to remove reference to specific circuitry elements since the reader is

not expected to have a deep understanding of electrical engineering. However, com-

pared to the Cyclometer and the Bombe, the Bomba requires more logical operations

since it necessitates the equivalent of an AND gate. To maintain clarity for readers

we will construct the Bomba piece by piece with relatively simplified circuit diagrams

intended to give the reader an understanding of how such a machine could work in

practice. Note that while we indicate transistors here for simplicity, the actual ma-

chine was an electromechanical computer which used relays and switches for these

operations. Consider the following circuit:
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Qy,x Nz

Qy,x Nz+3

T+

T−

A B C D

V +

On the left we have our two sets of rotors represented by permutations N−1
z Qy,xNz

and N−1
z+3Qy,xNz+3 (three steps apart). Note that these permutations ignore the plug-

board setting S, a caveat we will discuss later. Further, we will implicitly set the

rotors’ ring settings to AAA by just placing each letter above its corresponding contact

on the rotor.

The dotted line represents our battery line. When current enters through the battery

line, it is only able to enter at contacts which have their switches flipped, this is how
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the operator can select the input letter. When the input letter then travels through

the rotors, it will exit at some other location. If both N−1
z Qy,xNz and N−1

z+3Qy,xNz+3

produce the same exit letter for the given input letter, then both exit letters will

reach transistor gates along the same line (depicted with letters A, B, C, D). When this

happens, current is freely able to flow from T+ to T−.

To see this, note that in our diagram we have A selected as the input letter. Following

N−1
z Qy,xNz we can see that the rotor will now output C. Similarly, rotor N−1

z+3Qy,xNz+3

will output C. Each of these will then travel to transistor gates of the line labeled C,

thus opening both transistors in this line and allowing current to flow from T+ to T−.

Thus, if we connect our battery in parallel to the line from T+ to T− and some current-

triggered detector in series with the line from T+ to T−, the detector will only trigger

when the input letter (in our case A) produces a female (in our case C) for the specified

rotor position. We can abstract this entire circuit by noting that the wires exiting

the enclosing box of the diagram are all that are needed to detect the presence of a

female for the given rotor position and input. The box itself has settings consisting

of the choice of rotors, rotor positions, and which switch we select for our input letter.

To allow this machine to detect three different pairs of females, we can simply align

three female detectors in series, with three different rotor settings (x, y, z), (x′, y′, z′),

and (x′′, y′′, z′′) which indicate the start of that detector’s particular female. We then

wire the three detectors to a stopping mechanism (in the case of the Bomba this was

an electromagnet), and the machine will stop whenever all three females are detected.
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x, y, z x′, y′, z′ x′′, y′′, z′′

STOP

This is more or less the structure of the Bomba. Using our above construction we

can select rotor positions corresponding to 3 females (thus representing 6 total sets of

rotors) and we can select an input letter which we expect to produce these 3 females.

The machine rotates all the rotors simultaneously so they maintain their relative dis-

tance from one another and as it churns through all 263 rotor positions. The machine

will halt when it finds an absolute position corresponding to females in each set of

rotors.

The origin of the name Bomba is disputed amongst records with the following claims

to its namesake:

• A United States Army report explained that the original machines, which were

turned by hand, would drop components on the floor when a solution was found

producing a loud noise [1, p. 10].

• Colonel Lisicki of the Bureau explained that the name came from a popular

ice-cream dessert of the same name which was consumed while the machine was

first conceptualized [24, p. 63].

• Rejewski claims that the name was effectively random [30, p. 226].
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From this machine we will now show that the daily key can be derived. We must first

account for some caveats in our construction of the machine.

Turnover. In our construction we made the simplifying assumption that the rotor

3 steps apart from N−1
z Qy,xNz is N−1

z+3Qy,xNz+3. Of course, if rotor turnover occurs

between these two points, the middle rotor will have stepped making this assumption

no longer true.

We found no explicit account of how turnover was handle in practice. It is possi-

ble that it was simply ignored since the likelihood of turnover in a 3 letter sequence

of characters is 3
26

, meaning that there is a

(1 − 3

26
)3 ≈ 0.69

chance that no turnover occurred in all three messages being examined. With a

sufficient number of messages, simple trial and error will eventually yield legitimate

results.

It is also possible that they explicitly handled turnover in their analysis. Earlier

discovery of rotor wirings and ring notch locations meant that cryptanalysts knew,

for a given rotor order, which window settings will produce turnovers in the 3 steps

spanning the female being examined. Therefore, we definitively know whether or not

a turnover occurred for a given message, so we can update the middle rotor as neces-

sary to ensure the two rotors maintain a relative distance of 3 steps. This amounts

to changing y to y + 1 for some rotor orders and messages – though for the sake of

notational simplicity we will not account for this explicitly.
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The Plugboard. Recall that our rotors are represented by permutations of the

form N−1
z Qy,xNz. Such permutations completely ignore the effect of the plugboard

permutation S. However, consider a message with the keys

RTJ WAH WIK

For this message, denote the Enigma permutations at positions 1 and 4 as π1 and π4

respectively. Recall that W at positions 1 and 4 represent the same enciphered letter.

Thus, we have

π1(W) = π4(W).

Consider the impact of the plugboard. Suppose W is fixed by the plugboard permu-

tation S. We then have,

π1(W) = π4(W)

⇐⇒ S−1N−1
z Qy,xNzS(W) = S−1Nz+3x

−1Qy,xNz+3S(W)

⇐⇒ S−1N−1
z Qy,xNz(W) = S−1Nz+3x

−1Qy,xNz+3(W)

⇐⇒ S−1(N−1
z Qy,xNz(W)) = S−1(Nz+3x

−1Qy,xNz+3(W)).

Since S−1 is an injection, this occurs if and only if

N−1
z Qy,xNz(W) = N−1

z+3Qy,xNz+3(W)

This means that for the purposes of testing for females on input W, our simplified

rotor model works correctly so long as S fixes W. At the time when this machine was

developed anywhere from 5 − 8 plugboard jacks were being used, meaning that, on
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average, half of the letters were fixed. Therefore, we have a reasonably high proba-

bility of our analysis being correct. In particular, around every other attempt should

produce valid results.

This is also why our messages were chosen so that they all had the same letter W

being repeated. We need only one letter fixed by S. We can then use this letter as

the input for all our female detectors in the Bomba. Compared to the grill method,

which relied on many letters being fixed by the plugboard, such a method was far

more resilient to the addition of plugboard jacks.

2.7.4. Recovering the Ring Settings

In our Bomba we have 6 rotors, with 3 of them being paired such that they are 3

steps apart. Let us refer to these 6 rotors as,

Rx,y,z - Rx,y,z+3

Rx′,y′,z′ - Rx′,y′,z′+3

Rx′′,y′′,z′′ - Rx′′,y′′,z′′+3

When our Bomba stops, we know the positions at which the females observed would

occur, with a supposed ring setting of AAA (we will denote (01, 01, 01)). From this

position, we will now attempt to recover the true ring setting. Suppose rotor Rx,y,z

stops at a position (a, b, c). We now know that with window setting (a, b, c) and ring

setting (01, 01, 01) we have a set of permutations that generates the desired females.

Of course, the actual window setting given in the message is (x, y, z). In order to

maintain our permutations that produce the observed females we need to ensure that

as we change the window setting to correspond with the known window setting, we

correctly change the ring setting so as not to affect the permutation. Recall that the
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permutation of a rotor will not change if the ring setting and window setting change

identically, that is – without turnover, moving the ring setting forward by k steps

and moving the window setting forward by k steps will not change our permutation.

Since our goal is to change our window setting from (a, b, c) back to the actual window

setting (x, y, z), we must change our window setting back by a displacement of

((a− x) mod 26, (b− y) mod 26, (c− z) mod 26).

Thus to get the value of the true ring setting, we compute

(01− (a− x) mod 26, 01− (b− y) mod 26, 01− (c− z) mod 26).

2.7.5. Recovering the Rotor Order

If we run our machine for all 6 possible rotor orderings, we now have candidate

ring settings for each rotor ordering. Therefore, 6 Bomby (plural of Bomba) were

constructed. We can now test which rotor ordering is correct by using our ring

setting to attempt to decipher the doubly encoded message keys. If we were correct,

then we should see the same trigram deciphered twice. Of course, because we have

not yet set the plugboard we will not see the exact same trigram, but if we chose the

correct rotor ordering we will still see many copies of letters at a distance of three from

each other for any letter which was fixed by the plugboard. With enough deciphered

message keys we can guess which rotor ordering was used that day. Given both this

and the clock method described earlier we can recover the true rotor ordering.

2.7.6. Recovering the Plugboard

We now have the rotor order, the ring setting, and the window setting. We can then

attempt to decrypt a message key. For example, we may decode the message key
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from

LRJ PAH IKO

and get

ANK LRK

We can assume K is correct since we expect it to be repeated at a distance of 3 letters

apart, but the first two letters in each trigram are not identical indicating that they

are being affected by the plugboard. We might guess therefore the the message should

look like either something of the form

A.K A.K

or

L.K L.K

However, we have now deduced the entire permutation πi, save for S. We can therefore

derive which plugboard setting produces π1(P) = L or the alternate π4(I) = A. This

gives two plugboard possibilities. As we attempt to decrypt more message keys, we

can find plugboard settings which mutually agree, and thus work out the entirety of

the plugboard. With this, the cryptanalyst has recovered the entire daily key.

2.7.7. False Stops

It should be noted that a set of 3 females is not unique enough to pare down to a

single setting. The Bomba could produce many stops, each of which produce females

in all 3 pairs of rotors. These stops then need to be checked to see if the produce

valid settings. This meant that finding keys with the Bomby could take nearly two

hours [24, p. 242].
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Section 2.8

Zygalski Sheets

2.8.1. Changes to the Enigma Protocol

While the Bomby made searching for possible ring settings more efficient, it still relied

on the plugboard having a reasonable chance of having a fixed letter. On January 1,

1939, the Germans began to use 10 plugboard jacks [24, p. 242]. Thus, the probability

that the letter being examined was fixed by the plugboard went down to 6
26

, meaning

we would have to make use of the Bomby for 4 − 5 different sets of females on aver-

age. Further, the Germans began to change the rotor order every month (eventually

every day, and ultimately every 8 hours), meaning that we can no longer deduce one

rotor order for the entire quarter [24, p. 242]. To make matters worse, the Germans

introduced two new rotors (IV and V) meaning that the number of rotor orderings

went from 6 to 60 [24, p. 243]. All in all, this meant that to use the Bomby would

now require roughly 20 times as much work, making deciphering messages within the

same day an unreasonable feat.

Around the same time as the Bomba was developed, Henryk Zygalski devised an-

other means of using females in message indicators to recover the Enigma settings.

Recall that we used the Cyclometer to generate a massive catalogue of each rotor

position and ordering mapped to the corresponding cycle type of the characteristics

generated by this setting. Zygalski intended to create a similar catalogue of positions

and orderings, but now each entry related to the presence of a female for that setting.

Consider a message with a 1 − 4 female

BWY FVJ FUE
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Denote the Enigma permutation at the positions 1 and 4 respectively as π1 and π4.

We know that F in the ciphertext at both position 1 and 4 represent the same letter

(we will denote α). Then we have

π1π4(F) = π1(α) = F.

That is π1π4 contains the singleton cycle (F). The converse is also true, that contain-

ing a singleton cycle in π1π4 means that the letter contained in that singleton will

produce a 1 − 4 female.

We will denote πi without the use of the plugboard as πi, that is

πi = S−1πiS

Then we note that

π1π4 = S−1π1SS
−1π4S

= S−1π1π4S

Then we have that π1π4 and π1π4 are conjugate permutations. Then by Theorem 1.4,

these two must have the same cycle type. Thus, if either have a singleton cycle, they

must both have a singleton cycle. All this is to ultimately say, if a particular Enigma

setting produces a set of females (e.g. 1 − 4), it will produce the same location of

females (e.g. 1−4) for any plugboard settings. Therefore, the possibility of producing

a female is completely independent of steckerings.

With this in mind, Zygalski realized he could produce a catalogue of every rotor
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position and ordering, along with whether or not their characteristic had a fixed

point – that is, whether or not this setting could possibly generate a female.

2.8.2. Constructing Sheets

The catalogue was constructed as a series of sheets which are now called Zygalski

sheets. Sheets produced in this thesis were constructed by code in our project’s

open-source repository [39]. To our knowledge this is the first open-source code avail-

able for creating and using Zygalski sheets.

To construct a sheet, we can set our Enigma to ring settings AAA and we can set

our plugboard to the identity. We then choose a particular rotor ordering (e.g. I

III II) and set our leftmost rotor’s window position to a fixed letter (e.g. B). The

sheet will be a 26 by 26 square of cells with row and columns labeled A− Z. For each

cell location in row-column format (e.g. (Y, W)) we would set our machine to window

setting BWY and examine if such a setting could produce a 1 − 4 female. If a female

is possible, we cut out a hole in the cell representing that setting. If a female is not

possible, we leave that cell covered. We can denote such a sheet (B - I III II).
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z 0 . . . 0 . 0 0 . . . . 0 . 0 0 0 0 0 . 0 . . . 0 .

Y 0 0 0 0 . . 0 0 0 0 . . . . 0 0 0 . 0 0 0 . . 0 . 0

X . 0 . . 0 0 0 . . . . 0 . 0 . . 0 . . . . 0 . . 0 .

W . . 0 . . . . 0 . . . 0 . 0 . . . 0 0 . . . . 0 0 .

V . . . 0 . 0 . 0 0 0 . . 0 . 0 . 0 . 0 0 0 0 . . . 0

U . 0 0 . 0 . . . . . . . 0 . 0 . . 0 0 . 0 . 0 . . .

T . 0 0 0 0 0 . 0 . 0 0 . 0 . 0 . . 0 0 . 0 . . . . .

S . 0 . 0 . 0 0 . . . . . . 0 0 0 . . 0 0 . . . . . 0

R 0 0 . 0 0 0 . . 0 . 0 . 0 0 . 0 . 0 . 0 . . . 0 0 .

Q . . . 0 . 0 0 . . 0 0 . 0 . . . 0 . 0 . . . 0 0 . .

P . . 0 . . . . 0 . . 0 . 0 . . . . 0 0 . . . . 0 0 .

O . 0 0 0 0 0 . . . . . . 0 0 . 0 0 . . . . 0 0 . . .

N 0 . . . 0 . . 0 . 0 0 . . . . 0 . . . . . . . . . .

M 0 0 0 0 0 . . 0 . . 0 0 . . . 0 . . 0 0 . 0 0 0 0 0

L . . . 0 . 0 . 0 . . 0 0 . 0 0 0 0 0 . 0 . . 0 0 0 0

K 0 . . 0 0 0 . . 0 . . . 0 . . 0 0 . 0 0 0 . . 0 . .

J 0 0 . 0 . . . 0 0 . . . 0 0 . 0 0 . . . 0 . 0 . 0 .

I 0 . 0 . . . 0 . . . 0 . . 0 0 . . . . 0 0 . 0 . . 0

H . 0 . . 0 . . 0 . . . . . 0 . 0 . . 0 . . 0 . . 0 0

G . . . . 0 0 0 . . . . . . . 0 0 . 0 . . . . . 0 . .

F 0 0 0 . . . . 0 0 0 . . 0 . . . 0 0 0 0 0 . . . 0 0

E . 0 . 0 . 0 . 0 . 0 . 0 . . . . . . . . 0 . . . . .

D . 0 . . . 0 0 0 0 0 . . . . 0 . 0 . 0 0 0 0 0 0 . .

C . 0 . 0 . . 0 . . . . . 0 . 0 . 0 0 . 0 0 . 0 . . .

B 0 . . 0 . 0 0 0 0 0 0 . 0 0 . 0 0 . 0 . . . 0 . 0 0

A . . 0 . . . . . . . . 0 0 . . 0 0 0 . 0 . 0 0 . 0 0

Figure 2.1: (B - I III II) Zygalski sheet: O represents a hole and . represents its
absence

To maintain consistency with many digital recreations of Zygalski sheets, we use O to

represent a hole (that is, a singleton cycle) and a . to indicate a covered cell.
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Help from Bletchley. Originally as there were only 3 rotors, this meant they

had to produce 6 · 26 = 156 such sheets. However, when the Germans added two

new rotors, they now needed to produce ten times as many. Ultimately, the British

at Bletchley Park ended up producing a full collection of these sheets and sent the

collection to the Polish Cipher Bureau [30, p. 228].

2.8.3. Properties of Zygalski Sheets

The set of all sheets encodes, at every possible Enigma position, whether or not a

1 − 4 female can be produced. Our ultimate goal is to recover the ring settings for a

day’s transmissions.

Suppose we receive the following indicators

BWY FVJ FUE

We hypothesize that the rotor order is I III II, so we can get out the sheet (B - I

III II) depicted in Figure 2.1 and examine row Y column W to see if window setting

BWY with ring setting AAA can produce a 1 − 4 female. At this cell, we will see it has

no hole, indicating that such a setting cannot produce a female.

If we examine one cell to the right, we will be examining if the window setting

BXY with ring setting AAA can produce a 1 − 4 female. However, recall that, without

turnover, this is the same as examining the window setting BWY with ring setting AZA.

By changing perspective, we can reinterpret this sheet. Rather than giving many

possible window settings each with ring setting AAA, each cell can be read to be a

reference to the window setting BWY, each with a different ring setting. In particular,
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column c and row r will give us whether or not a window setting of BWY can produce

a 1 − 4 female with ring settings

(A, A− (c− W), A− (r − Y)).

Thus, such a sheet can investigate, for a given message key, all 676 possible ring

settings with its leftmost letter being A. In our case, we can relabel Figure 2.1 as

follows
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W V U T S R Q P O N M L K J I H G F E D C B A Z Y X

Z 0 . . . 0 . 0 0 . . . . 0 . 0 0 0 0 0 . 0 . . . 0 .

A 0 0 0 0 . . 0 0 0 0 . . . . 0 0 0 . 0 0 0 . . 0 . 0

B . 0 . . 0 0 0 . . . . 0 . 0 . . 0 . . . . 0 . . 0 .

C . . 0 . . . . 0 . . . 0 . 0 . . . 0 0 . . . . 0 0 .

D . . . 0 . 0 . 0 0 0 . . 0 . 0 . 0 . 0 0 0 0 . . . 0

E . 0 0 . 0 . . . . . . . 0 . 0 . . 0 0 . 0 . 0 . . .

F . 0 0 0 0 0 . 0 . 0 0 . 0 . 0 . . 0 0 . 0 . . . . .

G . 0 . 0 . 0 0 . . . . . . 0 0 0 . . 0 0 . . . . . 0

H 0 0 . 0 0 0 . . 0 . 0 . 0 0 . 0 . 0 . 0 . . . 0 0 .

I . . . 0 . 0 0 . . 0 0 . 0 . . . 0 . 0 . . . 0 0 . .

J . . 0 . . . . 0 . . 0 . 0 . . . . 0 0 . . . . 0 0 .

K . 0 0 0 0 0 . . . . . . 0 0 . 0 0 . . . . 0 0 . . .

L 0 . . . 0 . . 0 . 0 0 . . . . 0 . . . . . . . . . .

M 0 0 0 0 0 . . 0 . . 0 0 . . . 0 . . 0 0 . 0 0 0 0 0

N . . . 0 . 0 . 0 . . 0 0 . 0 0 0 0 0 . 0 . . 0 0 0 0

O 0 . . 0 0 0 . . 0 . . . 0 . . 0 0 . 0 0 0 . . 0 . .

P 0 0 . 0 . . . 0 0 . . . 0 0 . 0 0 . . . 0 . 0 . 0 .

Q 0 . 0 . . . 0 . . . 0 . . 0 0 . . . . 0 0 . 0 . . 0

R . 0 . . 0 . . 0 . . . . . 0 . 0 . . 0 . . 0 . . 0 0

S . . . . 0 0 0 . . . . . . . 0 0 . 0 . . . . . 0 . .

T 0 0 0 . . . . 0 0 0 . . 0 . . . 0 0 0 0 0 . . . 0 0

U . 0 . 0 . 0 . 0 . 0 . 0 . . . . . . . . 0 . . . . .

V . 0 . . . 0 0 0 0 0 . . . . 0 . 0 . 0 0 0 0 0 0 . .

W . 0 . 0 . . 0 . . . . . 0 . 0 . 0 0 . 0 0 . 0 . . .

X 0 . . 0 . 0 0 0 0 0 0 . 0 0 . 0 0 . 0 . . . 0 . 0 0

Y . . 0 . . . . . . . . 0 0 . . 0 0 0 . 0 . 0 0 . 0 0

Figure 2.2: Relabeled (B - I III II) representing window setting BWY with various
ring settings starting with A

It is useful to note that location at which the ring setting ending in AA occurs. We

will call this the sheets origin with respect to the indicator BWY.
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Similarly, for the sheet one letter away from (B - I III II), that is, sheet (C - I

III II), examining row Y column W will tell us, with window setting CWY and ring

setting AAA, if we can produce a 1 − 4 female. Of course, without turnover, this is

the same as examining window setting BWY with ring setting ZAA. Thus moving to the

sheet one letter forward is equivalent to examining our original indicator, but now

with the ring setting’s leftmost letter being Z. Thus, from the cell in sheet s, column

c, and row r, we learn whether or not the window setting BWY with ring setting

(A− (s− B), A− (c− W), A− (r − Y))

can produce a 1 − 4 female.

Other Females. While we may be able to find a sufficient number of messages with

1 − 4 females to be able to make use of the sheets, our work would be much easier if

we could include 2 − 5 and 3 − 6 females. Consider, for example, the indicators

PTC PGA TGQ

Of course, this is exactly the same as a 1 − 4 female with window settings PTD. In

this sense, it suffices to only produce sheets for 1 − 4 females.

2.8.4. Using Zygalski Sheets

In researching this thesis, no component was more troublesome than finding consistent

and accurate information regarding Zygalski sheets. Many claims, often conflicting,

were made by reliable sources. All the while, the closest description of how to actually

use these sheets was given by Bletchley Park cryptanalyst, Gordon Welchman, in his

book The Hut Six Story [40]. While Welchman does describe the underlying theory
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behind the sheets, he does not explain explicitly how we test different configurations

of the leftmost ring setting, nor how we deal with turnover. Further, I found no

settings or means by which to reproduce the example sheets provided in the book,

leading me to believe that they may be intended to give the reader an idea of what

such a sheet would look like rather than representing an actual sheet. I suspect this

is the case because I myself have done this for many examples provided in this thesis.

Creating examples from authentic Enigma messages can require hundreds of messages

to create a single example. The fact that some of these examples were fictitiously

created does not change the underlying theory described.

However, in this section, I have attempted to explain a descriptive and clear proce-

dure for usage of the sheets which is consistent with both Welchman and Rejewski’s

descriptions. In so doing, I will use sheets and indicators which were meticulously

crafted from real Enigma settings to illustrate the true process of decryption. Some

components which were not explicitly mentioned, I will attempt to fill in with ed-

ucated conjecture. In the end, I was able to decipher example messages using the

method described so, at a minimum, this is at least one way of using such sheets.
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Consider the following set of indicators,

BWY FNV FCF

AFQ LOG LJU

LZX IAP IYR

MHX DLE DVE

RHT WQH WAA

NSY VCK VJR

QBW OPA OVP

SBW HRE HIK

VFS SDL SAO

WFW VEJ VDE

YKW IGW IZZ

We begin with a large illuminated table. We now set up a frame with 26 by 26 letters

indicating ring settings in the right two rotors from A-Z. This will serve as the window

through which we will observe the sheets and ultimately, from this window, we will

read the ring settings.

We will first test the assumption of the rotor order I III II and the leftmost ring

setting A. We start with the first indicator. To get all possible ring settings beginning

with A and window setting BWY we must get out the sheet (B - I III I). We place

our sheet between the window and the table, and we now align the sheet such that its

origin with respect to BWY matches the position (A, A) on the window. Thus, the win-

dow now reads consistently with the ring settings being tested for window setting BWY.
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Note that if our Zygalski sheets were only 26 by 26, such a translation of the sheet

would mean that there would be empty space in the window where no sheet was

present as in Figure 2.3. Thus, to account for this, Zygalski sheets were actually 51

by 51, with cells repeating modulo 26 and labels on each axis from A-Z and then A-Y.

window

(B - I III II)

origin

ZYXWVUTSRQPONMLKJIHGFEDCBA

Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

Figure 2.3: Sheet (B - I III II) shifted so that its origin is in location (A, A) in
the window

We now consider our next indicator AFQ which corresponds to sheet (A - I III II).

We place it in the window and translate it so that its origin aligns with (A, A). After

doing this, the holes in both (B - I III II) and (A - I III II) will only line up

at specific locations leading to a window with holes with light shining through as

follows,
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Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

A 0 . . . . 0 0 . . . 0 . . . . . . 0 . . . 0 . . . .

B . . . . . . . 0 0 0 . . . . . . . . . . . . . . . .

C 0 0 . . . . . . . . . . . . 0 . . . . . 0 . . . . .

D . . . . . . . . 0 . . . 0 . . . . . . 0 . . . 0 0 .

E . . . . . . . 0 . . . . . . . 0 . . . . 0 0 . 0 . 0

F . . . . . 0 0 . 0 . 0 . 0 0 . 0 . . . . 0 . . . . .

G . . . . . . 0 . . 0 . . . . . . . 0 . . . . 0 . . .

H . 0 . . 0 . 0 . 0 . . . . 0 . 0 . . 0 . . . . . . .

I . . . . . . . . 0 0 . . 0 . . 0 . . . 0 . . . . . .

J . . . . . . . . . . . . . . . . . . . . . 0 . . . .

K . . . . . . . 0 . . . . . . . . 0 . 0 . . . . . . .

L . . . 0 . . . . . . 0 . 0 . . . . . 0 . . . . . . .

M 0 0 . 0 0 . 0 . . . 0 . . 0 0 . . . 0 . . . . . . .

N . . . . . . . . 0 . . . . 0 . . . . . 0 . . . . . .

O . . . 0 . . . . . . . . . . . 0 . . . 0 . . 0 0 . .

P . . . . 0 . 0 . . . 0 . . . . 0 0 . . . . . . . . 0

Q . . . . . . . . . 0 . . . . . . 0 0 . . . . . . . .

R . 0 . . . . . . . . 0 . . . . . 0 . 0 . . . . . 0 .

S 0 . . . . . . 0 0 . . . . . . . . 0 . . 0 . . . . .

T . 0 0 0 . 0 . . . . 0 0 0 . . . . . . . 0 . . 0 . .

U . . . . 0 . . . 0 . 0 . 0 . . . . . . . . . . 0 . .

V 0 . . . . . . . . . . 0 0 . . . . . . . . 0 . 0 . .

W . . . . 0 . . . . . . . . . . 0 . . . 0 . . 0 0 . .

X . 0 0 . . . . . . . 0 0 . . . . 0 . 0 0 . 0 . . . 0

Y . . 0 . . 0 . . . . . . . . . . . . . 0 . . 0 . . .

Z . 0 . . . . . . . . . . . . . . . 0 . 0 . . . . . .

Figure 2.4: Window after lining up sheets for the first two indicators BWY and AFQ

Continuing in this fashion, placing the origin of each sheet corresponding to an indi-

cator in the top right of our window, we are left with the following cells displayed,
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Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

A . . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . . . . . . . . . . . . . . . . . . . . .

D . . . . . . . . . . . . . . . . . . . . . . . . . .

E . . . . . . . . . . . . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . . . . . . . . . . . .

G . . . . . . . . . . . . . . . . . . . . . . . . . .

H . . . . . . . . . . . . . . . . . . . . . . . . . .

I . . . . . . . . . . . . . . . . . . . . . . . . . .

J . . . . . . . . . . . . . . . . . . . . . . . . . .

K . . . . . . . . . . . . . . . . . . . . . . . . . .

L . . . . . . . . . . . . . . . . . . . . . . . . . .

M . . . . . . . . . . . . . . . . . . . . . . . . . .

N . . . . . . . . . . . . . . . . . . . . . . . . . .

O . . . . . . . . . . . . . . . . . . . . . . . . . .

P . . . . . . . . . . . . . . . . . . . . . . . . . .

Q . . . . . . . . . . . . . . . . . . . . . . . . . .

R . . . . . . . . . . . . . . . . . . . . . . . . . .

S . . . . . . . . . . . . . . . . . . . . . . . . . .

T . . . . . . . . . . . . . . . . . . . . . . . . . .

U . . . . . . . . . . . . . . . . . . . . . . . . . .

V . . . . . . . . . . . . . . . . . . . . . . . . . .

W . . . . . . . . . . . . . . . . . . . . . . . . . .

X . . . . . . . . . . . . . . . . . . . . . . . . . .

Y . . . . . . . . . . . . . . . . . . . . . . . . . .

Z . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.5: Window setting after overlaying sheets corresponding to all indicators

That is, all holes are blocked, and thus there is no position for which the rotors I

III II and ring settings beginning with A can generate the observed females.
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This only tested all ring settings beginning with A. To test the ring settings be-

ginning with B we can move each sheet letter back by 1. That is, instead of sheet

(B - I III II) use sheet (A - I III II), and perform the exact same procedure.

Iterating in this fashion through each possible letter in the leftmost ring setting, we

will find some sheets which do have light peering through holes in all the sheets.

Many of these settings, after testing, will be ruled out. However, eventually when we

have moved the letter on each sheet back 3 times, which corresponds to the leftmost

ring setting being D, we will see the following window,
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Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

A . . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . . . . . . . . . . . . . . . . . . . . .

D . . . . . . . . . . . . . . . . . . . . . . . . . .

E . . . . . . . . . . . . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . . . . . . . . . . . .

G . . . . . . . . . . . . . . . . . . . . . . . . . .

H . . . . . . . . . . . . . . . . . . . . . . . . . .

I . . . . . . . . . . . . . . . . . . . . . . . . . .

J . . . . . . . . . . . . . . . . . . . . . . . . . .

K . . . . . . . . . . . . . . . . . . . . . . . . . .

L . . . . . . . . . . . . . . . . . . . . . . . . . .

M . . . . . . . . . . . . . . . . . . . . . . . . . .

N . . . . . . . . . . . . . . . . . . . . . . . . . .

O . . . . . . . . . . . . . . . . . . . . . . . . . .

P . . . . . . . . . . . . . . . . . . . . . . . . . .

Q . . . . . . . . . . . . . . . . . . . . . . . . . .

R . . . . . . . . . . . . . . . . . . . . . . . . . .

S . . . . . . . . . . . . . . . . . . . . . . . . . .

T . . . . . . . . . . . . . . . . . . . . . . . . . .

U . . . . . . . . . . . . . . . . . . . . . . . . . .

V . . . . . . . . . . . . . . . . . . . . . . . . . .

W . . . . . . . . . . . . . . . . . . . . . . . . . .

X . . . . . . . . . . . . . . . . . . . . 0 . . . . .

Y . . . . . . . . . . . . . . . . . . . . . . . . . .

Z . . . . . . . . . . . . . . . . . . . . . . . . . .

This corresponds to the ring setting DFX which was, in fact, the rotor position that

was used to encipher these indicators. This also means that our supposed rotor order

is correct. If we iterate through every possible left ring setting and find no valid
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settings, we must repeat this entire process for a new supposed rotor order. Though,

by using the clock method, we can drastically decrease how many rotor orders we

must try.

Recovering the Plugboard Setting. We can recover the plugboard settings ex-

actly as we did for the Bomba described in Section 2.7.6. At this stage we will also

uncover if we received a false setting from the window since we will find conflicting

plugboard options.

Turnover. Much of this procedure was predicated on the fact that moving our

window setting by some amount can be treated as moving the ring setting by an

inverse amount. This is true, except when turnover occurs. This means that for some

window settings of the right hand rotor we simply cannot interpret these cells as

having the associated ring settings we described earlier. For a particular rotor order,

this means there is a set of 4 adjacent rows on which we must not base our deductions.

To understand why there will be 4 such rows let us consider our sheet (B - I III

II). Rotor II will turnover whenever the window is at E. This means that if the

righthand rotor begins at B, it will necessarily turnover while enciphering between

the 1st and 4th position, meaning it will turnover while enciphering our females.

This will similarly occur when the righthand rotor is at C, D, and E. This means that

all four of these rows will not accurately represent the ring settings we label them with.

Programmatically this can be dealt with by ensuring that all 4 such rows have holes

in every cell, thus ensuring that they do not accidentally rule out a possibly valid

setting. How cryptographers actually dealt with this when using the physical sheets

is unknown to me as no source referenced such an issue, save for Tony Sale in his
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digitized implementation of the sheets, where he solved the problem as I did [36].

This is a question that warrants further historical research.

Expected Number of Sheets. We will now compute the expected number of sheets

required to carry out the above operation. We first need to determine the probability

that a particular Enigma setting can generate a female. Consider an Enigma permu-

tation σ, our goal is to determine the probability that π1π4 has a singleton cycle. We

will make the simplifying assumption that π1 and π4 are pulled independently from

a uniform distribution over all 213 cycles.

We will fix π1 as containing 13 disjoint transpositions labeled τi, that is

π1 = τ1 . . . τ13

π1π4 will contain a singleton cycle if and only if π1 and π4 contain at least one trans-

position in common. Then it suffices to determine the probability that π4 contains

at least one transposition from the τis.

We denote the event that τi is contained in π4 as Ei. Then the probability that

at least one τi is common between π1 and π4 is

P
( 13⋃

i=1

Ei

)

By inclusion-exclusion this gives us

∑
1≤i≤13

P(Ei) −
∑

1≤i<j≤13

P(Ei ∩ Ej) + · · · +
∑

1≤i1<···<i13≤13

P(Ei1 ∩ · · · ∩ Ei13)
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We will begin by considering P(Ei), that is, the probability that π4 contains the

transposition τi. Then to calculate this probability, we can imagine fixing τi and then

we have free choice over the remaining 12 transpositions. This is the same as the

number of 212 cycles. We can then divide by the total number of π4s which is just

the number of 213 cycles. This gives us

P(Ei) =
# of 212 cycles

# of 213 cycles

Using Lemma 1.6, we can compute

P(Ei) =

24!

21212!
26!

21313!

=
2 · (13)! · (24)!

(12)! · (26!)
.

We can write this as

21 · (13)! · (26 − 2(1))!

(13 − 1)! · (26!)

which will be useful later when trying to determine a generic formula.

We now consider P(Ei ∩ Ej), that is, the probability that π4 contains both trans-

positions τi and τj. Similarly, we can imagine fixing τi and τj and then we have free

choice over the remaining 11 transpositions. Following a similar argument as above
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we derive

P(Ei ∩ Ej) =

22!

21111!
26!

21313!

=
22 · (13)! · (22)!

(11)! · (26!)

=
22 · (13)! · (26 − 2(2))!

(13 − 2)!(26!)

In general, we arrive at the formula for an arbitrary number of fixed transpositions

(τi1 , . . . , τik) with k ≤ 13 as

P(Ei1 ∩ · · · ∩ Eik) =
2k · (13)! · (26 − 2k)!

(13 − k)! · (26!)

Then computing our original probability, we have

∑
1≤i≤13

P(Ei) −
∑

1≤i<j≤13

P(Ei ∩ Ej) + · · · +
∑

1≤i1<···<i13≤13

P(Ei1 ∩ · · · ∩ Ei13)

=
13∑
i=k

(−1)k+1

( ∑
1≤i1<···<ik≤13

P(Ei1 ∩ · · · ∩ Eik)

)

=
13∑
i=k

(−1)k+1

( ∑
1≤i1<···<ik≤13

2k · (13)! · (26 − 2k)!

(13 − k)! · (26!)

)

=
13∑
i=k

(−1)k+1

(
13

k

)
2k · (13)! · (26 − 2k)!

(13 − k)! · (26!)

≈ 0.405

Thus, any given setting has a roughly 40.5% chance of being able to have a female.

Then the likelihood that n Enigma machines with randomized settings all produce a

female is

(0.405)n.

73



2.8 Zygalski Sheets Bomba Kryptologiczna

Then this is also the probability that, at a given location, there is a hole present in

all n sheets. Given that there are 262 holes being examined, the expected number of

holes peering through all n sheets is

(0.405)n · (262)

Ideally, we would like to reduce the possible settings down to just a single hole being

examined, and thus we would need to find the number of sheets n such that

(0.405)n · (262) = 1

Solving this gives us that we need roughly 12−13 sheets to produce a single surviving

hole in our overlapped sheets. This means we need to find 12 − 13 messages with

indicators containing females.
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Turing-Welchman Bombe

In the previous chapters, we have seen complicated manual cryptographic techniques

give rise to a set of electromechanical tools meant to make such work tractable over

short time periods. Changes to the Enigma protocol would soon necessitate the

construction of one of the largest such electromechanical devices to date, known as

the Bombe.

3.0.1. Changes to the Enigma Protocol

Recall that during the use of the Polish Bomba, Enigma operators were instructed to

send their window setting (Grundstellung) in plaintext, and then use this to doubly

encode their message key (Spruchschlüssel). Starting in 1940, a small but impactful

change was made to the Enigma encryption protocol for the Army and Air Force – op-

erators were instructed to send their encoded message key only once [31, pp. 331–332].

The Polish Bomba relied on relationships between the doubly encoded message key to

function, without such relationships all the previously mentioned tools became use-

less. World War II had begun and the need for intelligence material was greater than

ever. Thus, British intelligence brought a group of cryptanalysts, mathematicians,
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historians, linguists, and more, to Bletchley Park to engage in a large-scale attempt

to break the Enigma machine with this new protocol.

No name is more well known from this operation than that of Alan Turing, whose

work went on to become the foundations of modern computer science. Turing needed

to find a new means of attacking the Enigma encryption that could no longer rely

on the doubly enciphered message key. Consider that the reliance on the doubly

enciphered message key was really just a reliance on the knowledge that two letters

encoded the same plaintext at specific intervals of distance. Thus, Turing began

engineering a method of deducing daily keys via a known plaintext attack.

3.0.2. Herivel Tip

While Turing was developing his plaintext attack that ultimately culminated in the

creation of the Bombe, there was a short period of time in which little to no Enigma

messages could be deciphered [40, p. 102]. During this time, Bletchley Park crypt-

analyst John Herivel had a simple idea. When operators set their ring settings as

described by the key sheet they would place their wheels in the machine in the or-

der described, and they would then turn the outer ring on each wheel so that the

corresponding ring setting letter was at the top of the wheel. If the operator was

particularly lazy, this was all they did, or if they were only slightly lazy, they may

turn the wheels a couple turns forward or back. Regardless, this meant that many

operators began enciphering their messages with a window setting that was nearly

identical to the ring setting. Thus, by looking at several operators’ first messages of

the day, we would see a cluster around a particular setting that is likely to be the

ring setting. Such an insight became known as the Herivel tip [8, p. 143].

With the Herivel tip, we could determine a likely ring setting. Then by either brute
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force or use of the clock method, we could determine the rotor order. Then finally,

as we did to recover the plugboard from the Bomba in Section 2.7.6, we could even

recover the plugboard settings. Thus, purely by virtue of operator error, we could

recover the entire daily key.

3.0.3. Parkerismus

Similar to the Herivel tip, Bletchely Park analyst Reg Parker found a shortcut to

deduce some wheel orders, ring settings, and plugboard configurations. The pre-

sumption was that the German operators in charge of creating the key sheets needed

to produce a large amount of random or pseudo-random numbers to create each daily

key. As the number of unique keys increased, this task became cumbersome so, to

reduce time, the operators creating the key sheets may reuse one or more columns

of the key sheet from previously generated sheets. By keeping track of previously

deduced daily keys, Parker found that, in fact, some columns from the daily sheets

had been reused from previous months.

As parts of keys were broken, the relevant setting (e.g. wheel order, rotor order,

plugboard configuration) were compared against Parker’s records of prior keys to de-

termine if that same setting appears in a prior sheet. If it was, Parker guessed that

the entire column may actually be the same as the earlier month’s and this would

completely determine one component of the daily key for an entire month. As other

components were deduced more columns could be determined in their entirety until,

eventually, the entire month’s key sheet could be determined in advance. This proce-

dure became known as Parkerismus [40, pp. 130–131]. Welchman explained that at

one point they had determined the entire month’s worth of keys that Rommel would

use in Africa just by use of Parkerismus [40, p. 131].
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Ultimately, the Herivel tip and Parkerismus only helped them to decipher messages

in particular circumstances. Herivel’s trick was only used within a particular network

of operators known as the ”Red network” [40, p. 101]. Similarly, Parker’s trick only

functioned when certain columns in the key sheet had been reused. However, as we

will later see, access to a set of plaintext from messages will become a vital component

of our plaintext attack.

Section 3.1

Plaintext Attack

Suppose we knew the plaintext which had been enciphered into a particular Enigma

transmission. Consider the following mapping,

A B R A C A D A B R APlaintext

D Y Y Y Y Y X Y Y Y XCiphertext

1 2 3 4 5 6 7 8 9 10 11

where the top row indicates our plaintext message, the bottom row indicates the

ciphertext, and the indices on the arrows indicate which step we are at while enci-

phering this message.

From this pairing we have that

π1(A) = D

π7(D) = X

π11(X) = A

Thus, π1, π7, and π11 form a loop starting at A. We visualize this loop as follows
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A

D X

π1

π7

π11

with doubly linked arrows, since each πi is an involution.

Recall that, ignoring turnover, each πi is of the form

πi = S−1P−(x+i)N−1P x+iM−1L−1RLMP−(x+i)NP x+iS

We will denote πi separated from its plugboard as

πi = P−(x+i)N−1P x+iM−1L−1RLMP−(x+i)NP x+i

that is πi = S−1πiS (conversely, πi = S−1πiS)1. Then our loop is expressed by the

fact that π11π7π1 has a fixed point at A. We also note that the intermediate plugboard

settings cancel out, that is,

π1π7π11 = S−1π1SS
−1π7SS

−1π11S

= S−1π1π7π11S.

We will condense this notation by defining

π := π1π7π11

and

π := π1π7π11

1It should be noted that S = S−1 since the plugboard is always an involution.

79



3.1 Plaintext Attack Turing-Welchman Bombe

And thus we have shown π = S−1πS (conversely, π = S−1πS).

Let us hypothesize that A is steckered in the plugboard to α – that is, S(A) = α

(conversely, S(α) = A). It then follows that for a fixed i ∈ N

πi(α) = SπiS(α)

= Sπi(A)

= S(A)

and so we derive

S(A) = α ⇒ S(A) = πi(α) ∀ i ∈ N

Then we have that A must be steckered to all values in the set {πi(α) | i ∈ N}. We

note that this set is that orbit of the element α under the group action of the subgroup

⟨π⟩ – that is, ⟨π⟩ · α.

By construction of the Enigma machine, A cannot be steckered to more than one

value at a time, so if |⟨π⟩ ·α| > 1 our initial hypotheses that S(A) = α must have been

incorrect. Further, the above argument also illustrates that A cannot be steckered

to any element in the orbit of α since we would similarly find that the orbit of that

element was not a singleton. Then we now have

|⟨π⟩ · α| > 1 ⇒ A cannot be steckered to any element in ⟨π⟩ · α

thus eliminating several elements that A could be steckered to.

By representing π in its cycle notation, we can quickly see whether certain hypotheses

are possible. For example, suppose we found that
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π = (ABCDEF)(GHIJK)(L)(MNOPQRSTUVWXYZ).

If we suppose that A is steckered to any element in the cycle (ABCDEF) we find that

this element has an orbit of length 6 in ⟨π⟩ and thus A cannot be steckered to any

element in this cycle. Then it is clear that A can only be steckered to L in this case.

3.1.1. Scanning Methods

Turing describes various methods of mechanizing the above analysis of cycle type to

determine when we can eliminate rotor positions.

(a) If we examine a particular hypothesis, say A is steckered to K, we can rule out

this steckering if we find that K is not in a 1-cycle, that is if π(K) ̸= K. If we

mechanize this process we can eliminate rotor positions which do not satisfy

this singular hypothesis. Turing called this method single line scanning [37,

p. 104]. Note, however, that this method may eliminate rotor positions which do

have valid steckerings, just not the particular steckering that we hypothesized.

(b) If we perform single line scanning in sequence, that is, for each steckering hy-

pothesis we check if that hypothesis produces a fixed point in π, we can rule

out rotor positions which have all steckering hypotheses invalid. Turing called

this method serial scanning [37, p. 104].

(c) Serial scanning requires a separate examination of each steckering hypothesis.

Turing proposed a machine which could concurrently examine all steckering

possibilities and eliminate rotor positions which had no valid steckerings. Turing

called this method simultaneous scanning [37, p. 104].

(d) If we find π has a 26-cycle, then we must have that there are no 1-cycles and

thus no valid steckerings. It then follows that the rotor position is incorrect. By

constructing an electromechanical device which tests for this condition, we can
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quickly eliminate some rotor positions which do not have valid steckerings. We

will call this method spider scanning. Note, however, that this method would

not, for example, detect that an π with cycle type 132 contains no valid steck-

erings. As Turing explained, “The ideal machine that Welchman was aiming at

was to reject any position in which a certain fixed-for-the-time Stecker hypoth-

esis led to any direct contradiction... The spider does more than this in one way

and less in another. It is not restricted to dealing with one Stecker hypothesis

at a time, and it does not find all direct contradictions” [37, p. 112]. Effectively,

spider-scanning is like a form of simultaneous scanning which is restricted to

examining only one cycle at a time.

Iterations of each scanning methods were proposed or designed, but in the end we

find that the spider scanning method was used in the implementation of the Bombe.

At a high level, we encode the structure of a plaintext-ciphertext pairing, and we

input a hypothesis that a particular letter (e.g. A) is steckered to another (e.g. α).

We then electrically produce the elements that must also be steckered to our test

letter (e.g. ⟨π⟩ · α) if our hypothesis were to be true. If we find that this production

generates a set of all letters, and thus disqualifies this rotor position from producing

the plaintext we observed, we can then continue on to the next rotor position until

we have no contradictory results from our hypothesis.

Section 3.2

The Bombe

In the section, we outline the construction of a rudimentary Bombe. Our goal is

to construct a machine using the above insight to quickly eliminate a rotor position

based on contradictory hypotheses. We must shift from the above mathematical
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construction to an electromechanical one. Imagine the following set of wires encoding

a possible Enigma permutation we will denoted πi (the bar indicates we are not yet

considering the plugboard).

πi

a

b

c

d

a

b

c

d

A couple quick notes about this abstraction. First, as these lines are simply wires,

current can flow in either direction, left-to-right, or right-to-left. Second, we can ap-

ply current to multiple wires concurrently, for example, applying current at a and c

will cause d and b to be live on the other side of the machine. Finally, the choice to

use lower case letters will become clear further in this section as we want to separate

the plugboard letters from the actual plaintext-ciphertext letters.

As described in our motivating example, we may want to connect Engima permu-

tations in series to capture an underlying relationship between a plaintext-ciphertext

pairing. Suppose we had the plaintext-ciphertext pairing,

B C APlaintext

A B C

1 2 3

Ciphertext

Then we find that there exists a loop in the pairing as follows:
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A

B C

1

2

3

We can then think of this loop as a series of three Enigma permutations. At each

step of enciphering the message, we have a new arrangement of the Enigma machine

represented by the permutation πi. Without the plugboard’s involvement, these are

denoted πi. For our plaintext-ciphertext pairing, we can imagine that the πis for our

loop of three Enigma machines may look as follows:

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

.

As before, let us make a hypothesis regarding steckering. Suppose S(A) = D. We

know that A must map to A via S−1π3π2π1S. In our diagram, however, we have not

accounted for the plugboard, so how can we represent the plugboard’s involvement?

In order to achieve this, we will function as the plugboard by applying voltage to

the d line on the A cable, thus implicitly performing the plugboard mapping in which

S(A) = D. Then this will go through the electrical mapping π1 arriving on the B cable,

followed by π2 arriving on the C cable, followed by π3 arriving back on the A cable,
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where we as the implicit plugboard know that the output of this electrical mapping

must go through the plugboard again to get a final output of A.

We will denote each wire by a capital and lowercase letter which indicates both

the cable and specific wire to which we refer. For instance, line d on cable A will

be denoted Ad. Any time a wire Xy is live, implicitly this means that there is an

intermediary plugboard which mapped S(X) = Y or S(Y) = X. To see this electrical

mapping occur let us visualize a current being sent through Ad.

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

Figure 3.1: Current passing from wire Ad back to wire Ad

Following our hypothesis that S(A) = D we find that after sending current through Ad

we arrive after mapping through π back at Ad. Since we got an output of Ad, we know
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that the plugboard needs to map D to A in order preserve our fixed point. Thus, we get

the statement that S(D) = A which is perfectly consistent with our original hypothesis.

On the other hand, if we change π and repeat this process which may end up in

the following situation

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

Figure 3.2: Current passing from wire Ad ending up at wire Aa

In this example, following our steckering hypothesis S(A) = D, results in Aa becom-

ing live after mapping through π and thus we must have S(A) = A as well, in order

to preserve our fixed point at A. This creates an inconsistency between our hypoth-

esis and deduction meaning that we can eliminate the both steckering possibilities

S(A) /∈ {A, D}.

Effectively, this process is a mechanization of finding the cycle containing a par-

ticular letter. In the above Figure 3.2, sending current from Ad until we arrive back

at Ad is akin to repeatedly applying π to D until we return to D. This can be visualized

in our diagram as
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π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

Here we find that in π we have the cycle (AD) since Ad and Aa are the only two live

wires in the A cable, after allowing currently to reach a steady-state. If we had instead

applied current to Ab, we would find that Ab and Ac become live, thus giving us the

full permutation π = (AD)(BC). The beauty of this design is that it is able to deduce

the elements in a cycle of π nearly instantaneously since it only requires the circuit

to reach a steady-state.

Equipped with this tool, spider-scanning becomes quite trivial. The goal of spider-

scanning is to eliminate a rotor position by checking if the permutation has a 26-cycle.

In our diagram, with four lines, this would be analogous to testing a steckering hy-

pothesis (any hypothesis) and finding that the entire cable becomes live. Then all

elements lie within the same cycle of π and thus all steckering possibilities are imme-

diately eliminated.

The Bombe is designed to quickly move through all 263 possible window settings

while maintaining the same relative distances between each Enigma permutation in

our loop. At each configuration it applies current to test our steckering hypothesis

and, only when an arrangement is such that it cannot be eliminated and further

examination is needed, we will cause the machine to stop.
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Scramblers. Thus far we have described the Bombe as connecting Enigma ma-

chines. In reality, the Bombe used a set of rotors known as drums mimicking the

effect of each Enigma rotor. Thus three drums together produced the effect of an

entire Enigma permutation. Such a set of drums was called a Letchworth Enigma

(or scrambler) [37, p. 102] [40, p. 39] which effectively mimicked the function of the

Enigma machine but was double-ended meaning current could be applied in either

direction to achieve our Enigma permutation.

3.2.1. Stopping Mechanism

The Bombe would stop when it detected that any line (say Ab) is no longer live. To

do this, we can place a differential relay such that it only engages when a current

difference is present between Ab and some constant power supply line. Then, when

current stops flowing through Ab, the relay will trigger. We can then wire the stopping

mechanism to the contact terminal of the relay such that the stopping mechanism

will only trigger when line Ab is not live (i.e. the relay is closed).

We can further extend this to detect when any line on the A cable is not live by

having each line Aa, Ab, Ac, Ad wired in parallel, each to a separate relay, all compar-

ing against the same constant supply voltage. If we wire our stopping mechanism to

engage if any relay closes then our stopping mechanism will engage if any wire ceases

to be live.

This raises the question of where to place this detecting circuit. If we are in the

situation described above, a loop of Enigma permutations, then this choice does not

matter. This is because if a 26-cycle is present in π3π2π1, it must also be present in

π2π1π3 and π1π2π1. This is because all of these permutations are conjugates of one

another, for example we have
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π2π1π3 = π−1
3 (π3π2π1)π3.

Since permutations in the same conjugacy class must have the same cycle type, it

follows that no matter where in the loop we place our detector, if all wires become

live on one cable they will become live on all cables. Thus, we can place our detector

anywhere.

3.2.2. Multiple Loops

In our example we provided only a single loop encoded in the plaintext-ciphertext

pairing. In practice, multiple loops could exist within such a pairing and we can

electrically connect all loops together within a row on the Bombe to produce a single

circuit. For instance, we might have a plaintext-ciphertext pairing as follows,

B C A A C CPlaintext

A B C B B ACiphertext

1 2 3 4 5 6

.

Thus encoding the following loops:
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B C

A

B C

4

5

6

1

2

3

With our diagram format this could look as follows:

π3

a

b

c

d

π1

a

b

c

d

π2

a

b

c

d

a

b

c

d

a

b

c

d

π5

a

b

c

d

a

b

c

d

π4

a

b

c

d

π6

a

b

c

d

A

B

B

C

C

Figure 3.3: Multiple loops in the Bombe

.
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This increased electrical connection results in fewer stops. In the next chapter, we

will return to the effect that multiple loops have on the number of stops.

3.2.3. Indicator Drums and Ring Setting

The Bombe is set up with k ≤ 12 scramblers

Rx1,y1,z1 , . . . , Rxk,yk,zk

intended to encode the various positions of our Enigma machine while enciphering

our plaintext-ciphertext pairing. Each scrambler will have an implicit ring setting of

ZZZ. We will assume that the window setting encoding the message began at ZZZ. The

Bombe then runs through all 263 positions of the Enigma machine until it finds a stop.

Suppose that at a stop, the drums have positions

Ra1,b1,c1 , . . . , Rak,bk,ck .

Recall that our ring setting is ZZZ (which we denote (26, 26, 26)). Then we know

that a candidate with a ring setting of (26, 26, 26) and window setting of (a1, b1, c1)

should produce our expected plaintext at the location of the first letter included in our

loop. Of course, we want the plaintext from the beginning of our plaintext-ciphertext

pairing, so this should actually occur at a window setting of

(Z + (a1 − x1) mod 26, Z + (b1 − y1) mod 26, Z + (c1 − z1) mod 26) (3.1)

with a ring setting of (26, 26, 26). Recall that our assumed window setting at the

beginning of our plaintext-ciphertext pairing is ZZZ. We want to move our window

setting 3.1 to correspond with this, but in order to maintain the permutation which

produced this stop, we must move the ring setting backwards by the same amount
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we must move to get from 3.1 to ZZZ. This displacement is given by

((a1 − x1) mod 26, (b1 − y1) mod 26, (c1 − z1) mod 26)

since the Zs cancel out. Then we must move our assumed ring setting of (26, 26, 26)

backwards by this same amount, thus giving a ring setting of

(26− (a1 − x1) mod 26, 26− (b1 − y1) mod 26, 26− (c1 − z1) mod 26). (3.2)

Thus with ring setting 3.2, and window setting ZZZ, we get the same permutation that

caused the original stop, now properly adjusted so that it aligns with our assumed

starting window setting.

Notice that (a1 − x1, b1 − y1, c1 − z1) is just the number of steps our machine has

made since it started. So, to get the ring position corresponding to the start of our

plaintext-ciphertext pairing, we just subtract the number of steps each rotor has made

from our assumed ring position (26, 26, 26). Rather than doing all this math, the

Bombe was equipped with an additional set of indicator drums which began with

labels ZZZ and for each step the machine moved forward, it moved the indicator drum

backward. This meant that when the machine stopped, the indicator drums would

immediately tell us the ring setting which corresponded to the start of our plaintext-

ciphertext pairing. Then, with this ring setting, setting our machine to the window

setting ZZZ would hopefully produce our expected plaintext-ciphertext pairing2.

2The actual rotors used in the Bombe scramblers were incorrect and did not match the true
Enigma rotors by varying degrees of rotation depending on the rotor in question. This meant
operators did not set their window settings to ZZZ but rather some small offset depending on which
rotors were included. This meant if we used rotors (II, V, III) our window setting would be YWY.
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3.2.4. Recovering the Plugboard

Given a stop, we now know that for our hypothesized rotor order, a window setting of

ZZZ, and ring setting given by the indicator drums, we should be able to produce our

plaintext-ciphertext pair. However, we have yet to deduce the plugboard setting. The

genius of the Bombe is that much of the deduction required to workout the plugboard

setting has been done for us. Consider a possible stop of the Bombe

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

Our hypothesized plugboard setting was that A was steckered to C and we found no

logical contradictions, thus producing a stop. This means that at a minimum we

recover that S(A) = C. However, we may as well have hypothesis that B was steckered

to D and thus we would have applied current to wire Bd. Note that this wire is

included in our connected component so we would have recovered the exact same stop.

That is, the statement S(B) = D also produced no logical contradictions. Similarly,

reading off cable C we would recover S(C) = A though we already knew this from

our first hypothesis. Thus, for each cable in our loop we recover a plugboard setting

consistent with our initial hypothesis (though some of these may be redundant). For

a sufficiently long loop we can recover several plugboard setting just by seeing which

wires are electrified on which cables.

Checking Machines. While looking at the internal wiring will, in fact, derive such

plugboard settings, from an operator’s perspective the Bombe only displayed which
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steckering our cable involved in our initial hypothesis produced. For this reason, a

special device was produced called a checking machine whose sole purpose was to

derive these plugboard settings from a stop of the Bombe. We will consider one such

derivation.

The checking machine was effectively an Enigma machine with no plugboard at-

tachment and no rotor advancement mechanism – effectively, the checking machine

represents a fixed πi. Suppose the operator (known as a wren)3 knew from the Bombe

stop that our hypothesis letter A was steckered to C (i.e. S(A) = C). Further, from

our loop, the wren knows that

π1(A) = B

We then have that

S(B) = S(π1(A))

= SS−1π1S(A)

= π1(C)

Then to determine what letter is steckered to B, the wren only needs to set their ring

settings to that given by the indicator, the window settings to that corresponding

to π1, and input C. Now using this newly deduced steckering, the wren can produce

the steckering of the next letter in the loop until we have deduced the steckerings

corresponding to each letter in our loop.

Invalid Stops. If at this stage we find that a deduced plugboard setting contradicts

an earlier plugboard setting we discovered, this means that the point at which the

3Wren comes from the abbreviation WRN of the Women’s Royal Navy Service. Such members
became the primary operators of Bombes at Bletchley Park [34, pp. 58, 97].
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Bombe stopped is incorrect! Recall that the Bombe stops when there are no logical

contradictions gleaned from its setup and the information in the loop – this does not

mean no logical contradictions exist. Further, even if no logical contradictions existed

that does not mean that this is the only such setting which could be logically consis-

tent with our plaintext (though this is certainly less likely). The use of the Bombe is

thus a trial-and-error procedure. We run the machine until we find a candidate stop,

then we check for possible further logical contradictions, and if such contradictions

are found, we continue from where we left off. Many additions we discuss later in this

chapter are designed with the sole purpose of reducing the number of stops we need

to check, down to a tractable number.

If we find our stop has valid plugboard settings, we can recover any remaining settings

quite easily. We can attempt to decrypt our ciphertext with our window setting of

ZZZ, our ring setting given by the indicator drums, and our plugboard settings we

discovered from the stop. If we find that there are letters which do not match our

expected plaintext we can deduce what plugboard settings need to be added to switch

out incorrect letters with their correct plaintext letters. In this way, we can recover

the entirety of the plugboard settings.

3.2.5. Recovering the Ring Settings

By this point we know that for our hypothesized rotor ordering, a window setting of

ZZZ, a ring setting given by the indicator drums, and a plugboard setting deduced

from the state of the stop, as well as additional logical induction, we can produce the

desired plaintext-ciphertext pairing. However, this does not mean the ring setting

that we have is the true ring setting. We assumed that turnover did not occur during

our crib so in this case we can adjust our window setting and ring setting arbitrarily

(so long as we keep their relative distances the same). Of course, eventually turnover
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will occur, at which point the discrepancy between our ring setting and the true ring

setting will become apparent.

We will first illustrate how to recover the true ring setting of the rightmost rotor. We

begin by setting our Enigma as previously described and inputting the ciphertext.

This should produce our expected plaintext. As we keep inputting ciphertext beyond

our known plaintext we will recover additional plaintext in the message. Eventually,

turnover will occur and we will begin deciphering gibberish since our ring setting is

not the true ring setting. To account for this, we can move our ring setting forward

by one step (which means we must also move our window setting forward by one to

maintain our permutation) and we can perform the same procedure, investigating if

we get gibberish. Eventually, we will have arrived at the true ring setting and our

deciphering will begin producing additional plaintext.

To recover the ring setting of the other two rotors we employ the same procedure

though it requires a great deal of ciphertext, as turnover becomes less and less fre-

quent as we consider the middle and leftmost rotor respectively.

3.2.6. Recovering the Rotor Order

In its full form the Bombe was constructed with 3 rows each equipped with 12 scram-

blers. For a single plaintext-ciphertext pairing we could test multiple rotor orders

simultaneously. If our plaintext-ciphertext pairing is shorter than 12 characters we

could test 3 rotor orders concurrently, one on each row. If it is longer, then we may

need to split it into two separate pairings spread across multiple rows, meaning that

we may only test 1 or 2 rotor orders. Further, over the course of the war many Bombes

were produced. This meant that it was feasible to test all 60 rotor orderings against

our plaintext-ciphertext pairing concurrently to see which orderings generated valid
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stops, thus allowing us to deduce the correct rotor order. In doing this, we have now

managed to recover all of the relevant settings of the daily key.

Rotor Order Reuse. German Enigma protocol stipulated the following:

• No rotor setting could appear in two months’ setting sheets [6]

• The same wheel could not be used in the same location two days in a row [6].

• In the same column, no wheel could be followed by a consecutive wheel (with

V and I not regarded as consecutive) [6].

This meant that if Bletchley were able to regularly deduce Enigma settings, they

could rule out many rotor orders which no longer needed to be tested in the next day

or month.

3.2.7. Turnover

Recall that when we initially set up our Bombe, we set each scrambler to correspond

to a location in our plaintext – the first location being ZZZ, the second being ZZA,

and so on. As mentioned previously, the assumption that only the righthand rotor

advanced in our window setting while enciphering the plaintext is only true if no

turnover occurs. If turnover occurred during the message encipherment, our machine

will not produce correct stops.

To account for this we will split up our message into multiple parts. Consider a

plaintext-ciphertext pairing that is 26 characters long. We are guaranteed to have

a turnover of the middle rotor during the encipherment of this message. However,

we know that the turnover must have occurred in either the first half or the second

half of the message. Thus, one half of the message assuredly had no turnover dur-

ing its encipherment. This means that if we split our message into two 13 character
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plaintext-ciphertext pairings, at least one of these will produce valid stops which will

ultimately guide us to our daily key. In general, as long as our message is shorter than

26 characters we can split the message into components such that one component is

guaranteed to not have turnover. If the message is longer than 26 characters there

could be 2 or more turnovers during encipherment meaning that splitting the text in

this way would no longer guarantee valid stops but, as we will see in our analysis in

the next chapter, a plaintext-ciphertext pairing of length 26 is more than sufficient

to produce a tractable number of stops, so this does not present an issue.

3.2.8. Cribs and Menus

We began with the supposition that the cryptographer is given a known plaintext-

ciphertext pairing. Unless the cryptographer was able to intercept a set of commu-

nications before and after encryption this supposition seems unrealistic. However,

cryptanalysts at Bletchley park employed two clever tricks that allowed for such pair-

ings to be deduced with reasonable effectiveness.

Determining Plaintext. First, analysts were able to cross-reference known infor-

mation to theorize likely phrases in a message. For instance, if the weather on a

particular day was windy with a chance of rain, we would expect that the weather

report (which intelligence knew arrived from specific channels at specific times) would

likely contain phrases like “weather,” “wind,” or “rain.”

Some sources of plaintext could be manufactured in a process known as garden-

ing [32, p. 187] [22, p. 144]. Bletchley Park could request that the British Air Force

“seed” a designated location with mines. It would then follow that many messages

would make specific mention of that location or port which contained the mines.
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Another source of plaintext lay in the message protocol. If a message was a con-

tinuation of another message, the message would begin with FORT (German for “con-

tinued”) followed by the time at which the first message was sent, repeated twice.

Numbers were ordered by the top row of the keyboard, that is, Q was 1, W was 2,

and so on. Thus if a message was sent at 23 : 30, and a subsequent message was a

continuation, it would begin with FORTYWEEPYWEEPY, where Y is used as a delimiting

character [9, pp. 278–279].

Determining Cribs. The second trick used by analysts was the use of permutation

theory to eliminate locations in the ciphertext where the plaintext could not feasibly

have been enciphered.

Recall that one consequence of the Enigma machine being a conjugate of the re-

flector is that no letter can be enciphered to itself. On D-Day the weather report had

the following ciphertext

QFZWRWIVTYRESXBFOGKUHQBAISEZ

Given that this was a report regarding the weather in the Bay of Biscay, we suspect

it to contain the following plaintext

WETTERVORHERSAGEBISKAYA,

that is, “weather forecast Biscay” [18].

If we overlay our ciphertext on top of our plaintext as follows,

QFZWRWIVTYRESXBFOGKUHQBAISEZ

WETTERVORHERSAGEBISKAYA.....
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we notice that at the 13th position, the letter S appears in both the plaintext and

the ciphertext. We know that such an encipherment is impossible, and therefore, the

suspected plaintext cannot begin at this location. If we slide the plaintext along our

ciphertext we get the following,

QFZWRWIVTYRESXBFOGKUHQBAISEZ

WETTERVORHERSAGEBISKAYA.....

.WETTERVORHERSAGEBISKAYA....

..WETTERVORHERSAGEBISKAYA...

...WETTERVORHERSAGEBISKAYA...

....WETTERVORHERSAGEBISKAYA..

We can see that at offsets 0 − 3 we have coincidences between the plaintext and the

ciphertext that would make enciphering at this position impossible. Only at an offset

of 4 do we observe no coincidences. Such a potentially valid location for enciphering is

known as a crib. We may find many such cribs for a given transmission and suspected

plaintext, but if our suspected plaintext is long, the likelihood of this occurring goes

down significantly, so we expect to find only a few cribs.

Now equipped with our crib

RWIVTYRESXBFOGKUHQBAISE

WETTERVORHERSAGEBISKAYA

Figure 3.4: Example crib

We can generate a diagrammatic representation of our plaintext-ciphertext pairing
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called a menu which will be used to wire up our Bombe. We assume the enciphering

starts with window setting ZZZ so we will denote which window setting maps each

letter to its plaintext counterpart [40, p. 306].

E

0

BU S YG

HX

W R FA

IQ T

K

V

ZZB ZZA ZZL

ZZ
F

ZZH

ZZM

ZZV

Z
Z
I

ZZS

Z
Z
K

Z
Z
Q

ZZJ

ZZP

ZZN

ZZW

Z
Z
O

ZZT

Z
Z
E

Z
Z
U

ZZR ZZC ZZD

Z
Z
G

Figure 3.5: Example menu

Upon looking at this menu one might ask the question of why we include connections

like the one between X and H if they are not included in any loop? From our ear-

lier machine description its clear that such connection will never electrify additional

wires. That is, they will only permute the incoming electrified wires but never in-

creasing the quantity of electrified wires since there is no feedback. Thus, they add

no additional value save for perhaps slightly more plugboard information. However,

an addition to the machine made by Gordon Welchman made use of such connections

and produced more electrified wires even within the loops themselves, thus reducing

the total number of stops needing to be checked.
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3.2.9. Diagonal Board

Recall that a wire Xy becoming electrified is consistent with the deduction that S(X) =

Y. But this deduction is equivalent to the statement S(Y) = X. It follows then that

if we apply current to Yx this will be entirely consistent with our current deductions

and thus there will be no new logical contradictions introduced by this additional

current. That is, for any wire Xy we can connect it directly to Yx through what was

called a diagonal board [40, pp.301–305]. In our diagram, this can be viewed as

follows:

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

Figure 3.6: Diagonal wires

This significantly increases the number of connections, adding k(k−1)
2

new wires where

k is the number of distinct letters in the menu. Adding more connections increases

electrical connectivity thus reducing the number of stops. In fact, prior to the use of

the diagonal board, often 3 loops needed to be present in the crib to have a tractable

number of stops. With the addition of the diagonal board this could be significantly

reduced and made the use of the Bombe practical [14].
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For instance, in our example from Figure 3.6, without the diagonal such a state

would produce a stop with hypothesis S(A) = D. However, adding the diagonal wires

would cause all wires to have current flowing through them – meaning that our origi-

nal stop must have been a false one, only revealed by the addition of new, consistent

deductions which ruled out all possible plugboard settings.

This also meant that connections in our menu not included in a loop, such as the con-

nection in 3.5 between X and H, could now produce feedback within our loops through

the diagonal board connections. This made such connections valuable additions to

a menu. This addition was so valuable in making the Bombe a functional means

of decrypting Enigma traffic that the Bombe is often called the Turing-Welchman

Bombe, as it was their combined contributions and insight that allowed the machine

to so effectively produce daily keys.

While the name often includes only Turing and Welchman, the man who turned

the mathematical theory of the Bombe into actual machinery was chief engineer of

the British Tabulating Machine Company, Harold “Doc” Keen [40, p. 81].

3.2.10. Consecutive Stecker Knock Out

In the Air Force Enigma protocol, the plugboard setting was always such that no

letter was connected to its neighboring letter in the alphabet (e.g. A cannot be con-

nected to B). Some Bombes had a setting called Consecutive Stecker Knock Out

(CSKO) that allowed for the elimination of some stops which implied consecutive

steckerings. This was accomplished by wiring wire Ab to Bc to Dc and so on, with an

optional jack that could complete the circuit on the back of the Bombe [8, p. 240].
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In general, the CSKO circuit not directly eliminate consecutive steckerings. How-

ever, consider the case of a stop (which we will later see is quite common) in which

every wire save for one is live. This implies that π has a cycle structure of 11251 and

that this remaining singleton cycle is the only possible plugboard setting. If this dead

wire representing the singleton does not imply any consecutive steckerings then the

CSKO circuit will not come into play and the stop would be considered legitimate.

If, however, a consecutive steckering like Ef is on the dead wire, we can see how the

CSKO circuit will eliminate this stop.

We know that Fe is the dead wire on cable F, since Ef and Fe are connected via

the diagonal board. Then any other wire on cable F must be live. In particular, cable

Fg must be live. We know that the CSKO circuit connects eF to Fg so it follows

that eF will now become live through the CSKO circuit. This will make live the only

remaining wire, and so all wires become live. Thus, cases in which the machine would

singularly imply consecutive steckering hypotheses would be eliminated. This reduces

the number of stops to be checked for Air Force traffic.

3.2.11. The Machine Gun

Even with these additions, we still have more deductions that can be made to rule

out certain settings. Consider our first stop we examined from Figure 3.1,
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This stop may seem to imply we found no logical inconsistencies in our deductions
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stemming from the hypothesis that S(A) = D. However, when a wren goes to check

the settings found, they will discover that this setting produces a contradictory plug-

board setting of S(A) = C – thus ruling out this stop. Is there a means by which

we could have detected this without having to manually work it out on a checking

machine?

Recall that before we introduced the checking machine, we noted that the plugboard

settings we would deduce from the checking machine were implicitly encoded in the

internal state of the wires of the machine. In particular since wire Ca was active, we

could have immediately deduced that S(A) = C without having to employ a checking

machine. However, these wires states are not easy for a human to read and would

require complex manual analysis of the underlying cables. Instead, a device called

the machine gun was developed which examined the state of the diagonal board at

a given stop to determine if logical contradictions were present among the deduced

plugboard settings. When a stop occurred, the machine gun would be brought in.

The device then used a series of uniselectors to quickly switch through the diagonal

board contacts to search for a pair of deduced steckerings that had a common letter

(thus producing a logical contradiction). The machine got its name from the sud-

den loud burst of sound produced when the uniselectors ran through the diagonal

board. The class of Bombes produced with the machine gun were dubbed Jumbo

Bombes [8, p. 240].

Even with such a device many stops still needed to be checked by the wrens since

the machine gun only detected logical inconsistencies in regards to plugboard setting

overlap and thus still produced false stops.
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Section 3.3

Banburismus

Early in this chapter, we discussed the changes made to the Enigma protocol that

necessitated the use of the Bombe. The changes discussed applied only to the Army

and Air Force. The Navy, on the other hand, had a completely different set of changes

that required additional insight to allow us to make use of our Bombe on such naval

messages.

3.3.1. The Naval Enigma

The German Navy used completely different Enigma models including M1, M2, M3,

and ultimately M4, the last of which actually allowed for the use of four rotors [11].

The first three models are compatible with the Enigma model I that we have been

discussing, so we will not be examining the differences between these machines in this

thesis. Further, the M4’s additional rotor presented additional cryptographic chal-

lenges to cryptanalysts but the underlying theory described above is the same.

The most important difference of the Naval Enigma was the addition of three ro-

tors – rotors VI, VII, and VIII. These rotors were exclusively used by the German

Navy and they functioned differently than the aforementioned rotors I-V. In partic-

ular, these new rotors had 2 turnover notches, diametrically opposed, doubling the

rate of rotor turnover. In theory, these new rotors increased the total rotor ordering

possibilities to 336, but the naval operating procedure specified that one of the three

rotors in a key sheet must be a naval rotor, thus reducing our rotor ordering space to

only 276 [11].

The theory underlying the Bombe still allows for the naval Enigma to be broken,
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but the additional rotors meant that the workload required to break such machines

was vastly increased. Further, the additional turnover meant that cribs from naval

transmissions no longer eliminated turnover by splitting the crib into two pieces. If

instead we knew the rotor ordering, we could quickly determine cribs that ignored

turnover and the amount of time we needed to use the Bombe would be vastly de-

creased. Turing invented a method by which cryptographers were able to reduce the

possible rotor orderings to a set of only a few possibilities which became known as

Banburismus [32, p. 76]4. This method took inspiration from the clock method

described in Section 2.5. To understand Banburismus, we must first understand the

procedure by which naval Enigmas sent messages.

3.3.2. The Naval Enigma Protocol

Unlike Army and Air Force key sheets, which by this point had stopped including the

window setting (Grundstellung) in their daily key, the Navy maintained this param-

eter of their daily key.

The naval operators were provided a large book of trigrams via a K-Book (K-Buch)

as well as a large mapping from bigrams to other bigrams known as a bigram ta-

ble [31, pp. 332, 334]. We will not discuss the exact details of choosing trigrams since

they are not of cryptographic importance, but suffice it to say that the operator chose

two trigrams from the K-Book (e.g. CAC and ABB) and arranged them in two rows as

follows,

.CAC

ABB.

4The naming was due to cards used during the process being produced in Banbury, a small
market town near Bletchley Park [32, p. 76].
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The operator then chose two random letters (e.g. B and B) and filled in the remaining

slots

BCAC

ABBB

Each vertical bigram would then be converted via the bigram table to a new bigram.

That is

BA 7→ CC

CB 7→ AA

AB 7→ BC

CB 7→ AA

And these new bigrams were then arranged into tetragrams which in our example

produces CCAA BCAA. These two tetragrams were then sent in plaintext at the start

of our message. To actually encipher their message, the operator set their machine

to the window setting specified by the key sheet and enciphered their second chosen

trigram, ABB, to get their message key [31, pp. 332–336]. We will call the message

key prior to being enciphered the pre-message key (in our case ABB). They then set

their window setting to the message key and began enciphering their message.

The long short of this procedure is that if we have a copy of the bigram tables,

we can work backwards to figure out the pre-message key for any naval message.
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3.3.3. Pinches

The recovery of bigram tables was an incredible feat of the British Royal Navy. The

Royal Navy boarded and recovered documents from a number enemy ships over the

course of several years. The recovery of such documents became known as pinches.

Some well known pinches are:

• The Narvik Pinch – This first pinch, on April 26, 1940, occurred when the

HMS Griffin boarded the German Polares headed for the port of Narvik.

Aboard, they found entire cribs, descriptions of the naval messaging protocol,

and keylists [9, p. 259].

• The Krebs Pinch – On March 4, 1941, the HMS Somali boarded the German

Krebs. Aboard, they found a keylist for the entire month of February [9, p. 260].

• The München Pinch – On May 7, 1941, the HMS Somali boarded the German

weather ship München. Aboard, they found a keylist for the entire month of

June [9, p. 260].

• The Lauenburg Pinch – On June 28, 1941, the HMS Somali boarded the German

weather ship Lauenburg. Aboard, they found a keylist for the entire month of

July [9, p. 260].

• The U-110 Pinch – On May 9, 1941, the Royal Navy struck the German U-boat

U-110. The crew abandoned the sinking ship, allowing members of the HMS

Bulldog to board. Aboard, they recovered an Enigma machine and the bigram

tables themselves (though they had already been reconstructed by Bletchley

Park at this point) [9, p. 261].

These pinches provided Bletchley Park cryptanalysts with the information necessary

to reverse engineer the bigram tables used by the German navy. With the bigram
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tables in hand, we can assume that for any naval message we are able to deduce its

pre-message key. With this assumption, we will now employ statistical analysis to

determine which rotors were most likely used in the daily key for a particular day.

3.3.4. Repeats

Suppose we find the following two naval Enigma messages:

Pre-Message Key Message

VFG GXCYBGDSLVWBDJLKWIP...

VFX YNSCFCCPVIPEMSGIZWF...

We know that after enciphering our pre-message key we will get our actual message

key. Both VFG and VFX will be enciphered with the same settings (say πi) so we know

that they will be converted to

VFG 7→ π1(V )π2(F )π3(G)

VFX 7→ π1(V )π2(F )π3(X)

Given that both message keys begin with the letters π1(V )π2(F ), we know that they

only differ by some unknown amount in their rightmost letter. Our first goal will

be to determine the distance between π3(G) and π3(X). Note that we know such a

distance ranges between −25 and 25 and we need not consider a distance of 0 as this

would imply the pre-message keys are the same.

Recall our discussion from Section 2.5.1 regarding the index of coincidence. We

know that when two texts represent the same poly-alphabetic cipher, the observed

distribution of coincidences (Bletchley Park called these repeats [2, p. 95]) should
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be much higher than two texts representing random text. Consider aligning our two

texts with an offset of +11 letters, that is, the hypothesis that π3(G) = π3(X) + 11

...........GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF

YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ.............

In this case we find 3 repeats when considering an overlap of length 54, this repeat

structure was denoted as 3/54.

For an offset of −9 we have

GXCYBGDSLVWBDJLKWIPEHVYGQZWDTHRQXIKEESQSSPZXARIXEABQIRUCKHGWUEBPF.......

.........YNSCFCCPVIPEMSGIZWFLHESCIYSPVRXMCFQAXVXDVUQILBJUABNLKMKDJMENUNQ

In this case we find 9 repeats when considering an overlap of 56 characters, but we

additionally found two bigrams (ZW and QI) which were repeated. As bigrams are

much more common in languages than random text, a point we will later discuss, we

must factor this into our analysis. Thus we denote the repeat structure at this offset

as 9xx/56, where each x denotes a bigram.

For any other n-gram repeat, we will use n in the exponent. For example, when

considering 3 repeats in 57 letters, where we note that there is a trigram repeated we

would denote this repeat structure as 33/57. This is actually the case when examining

our messages at an offset of −8.

Examining offsets from −9 to +95 we get the following chart of repeat structures

5In practice all offsets from −25 to +25 would be computed but the table has been shorted for
brevity.
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Offset Repeat Structure

VFG = VFX-9 9xx/56

VFG = VFX-8 33/57

VFG = VFX-7 2/58

VFG = VFX-6 0/69

VFG = VFX-5 3/60

VFG = VFX-4 2/61

VFG = VFX-3 3/62

VFG = VFX-2 3/63

VFG = VFX-1 4x/63

VFG = VFX+1 2/63

VFG = VFX+2 1/63

VFG = VFX+3 3/62

VFG = VFX+4 4/61

VFG = VFX+5 1/60

VFG = VFX+6 3/59

VFG = VFX+7 3/58

VFG = VFX+8 0/57

VFG = VFX+9 2/56

Table 3.1: Repeat structure at various offsets [21, Section 2.3]

The question now arises, which of these offsets is most likely. Of course an offset of −9

has the most repeats, but perhaps the trigram at an offset of −8 makes this case more

likely. In order to answer this question we will need a means to score these repeat

structures. To do this, we must take a brief moment to discuss Bayesian statistics.

3.3.5. Bayesian Statistics

Turing thought of the relationships between texts at various offsets in terms of

Bayesian statistics. Recall Bayes’ theorem [23, p. 175],

Theorem 3.1. Given events A and B, where P(B) ̸= 0 we have that

P(A|B) =
P(B|A)P(A)

P(B)
.
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This is given in terms of probability. We will see that the math becomes significantly

easier to do in one’s head if we think of these probabilities instead in terms of odds.

That is,

Definition 3.2. For an event A with probability P(A) we say that the odds of A

occurring are

O(A) =
P(A)

P(A)

where A denotes the probability of A not occurring, that is, P(A) = 1 − P(A).

Then we have

O(A|B) =
P(A|B)

P(A|B)

=
P(A)

P(A)
· P(B|A)P(B)

P(B|A)P(B)

=
P(A)

P(A)
· P(B|A)

P(B|A)

= O(A) · P(B|A)

P(B|A)
.

We will denote P(B|A)

P(B|A)
as F(A,B). This is called the Bayes factor [21, Section 3.1].

The Bayes factor can be thought of as a measurement of how much the odds of

an event increase when we add in a particular hypothesis. For a subsequent and

independent event C we have,

O(A|B ∧ C) = O(A) · P(B ∧ C|A)

P(B ∧ C|A)

= O(A) · P(B|A)

P(B|A)
· P(C|A)

P(C|A)

= O(A) · F(A,B) · F(A,C).
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Inductively, we have that for a series of independent events B1, . . . , Bk we get,

O(A| ∧k
i=1 Bi) = O(A) ·

k∏
i=1

F(A,Bi).

If we are considering many events Bi, then we have to do a lot of multiplications by

hand which are prone to error. For this reason, we consider the log-odds of these

events occurring, turning these products into summations. In particular, for log-base

b we have,

logbO(A| ∧k
i=1 Bi) = logb O(A) +

k∑
i=1

logb F(A,Bi).

This leads us to the following definition

Definition 3.3. A ban is a logarithmic unit of information gained from a Bayes

factor F(A,B), such that 1 ban is equivalent to a Bayes factor which asserts that the

odds of event A occurring are increased ten-fold when B is observed. That is

101 = F(A,B)

⇒ log10(F(A,B)) = 1 ban

Subsequently, a deciban is 1
10

of a ban, representing an event’s odds being increased

by a factor of 10
1
10 , given B occurred. The unit we will be using is half of a deciban,

known as a hubdub (hdB) [21, Section 4.1], representing an event’s odds being

increased by a factor of 10
1
20 , given B occurred. That is

20 log10(F(A,B)) = 1 hdB

In our case, if we use hubdubs, we arrive at the following relationship between our

114



3.3 Banburismus Turing-Welchman Bombe

odds

20 log10O(A| ∧k
i=1 Bi) = 20 log10O(A) +

k∑
i=1

20 log10 F(A,Bi)

Then a series of independent events B1, . . . , Bk increase the odds of A by
∑k

i=1 20 log10 F(A,Bi)

hdB. Note that if this value is positive, this implies that the event A is more likely

to have occurred after observing each Bi. If this value is negative, then the event A

is less likely to have occurred after observing each Bi. If it is 0, we have gained no

information.

3.3.6. Scoring Charts

Bletchley Park cryptanalysts pre-compiled a large chart of how many hubdubs a

particular observation of repeats was worth. Consider that at an offset of −13 our

messages with pre-message keys VFG and VFX have a 6/52 repeat structure. That is,

there are 6 monogram repeats occurring in 52 characters of observed text. We will

call this observed event B. We will call the event that the our overlap is in-depth –

that is, our rotors are aligned between both messages – as A.

To calculate how many hubdubs of information we gain we can compute.

20 log10 F(A,B) = 20 log10

P(B|A)

P(B|A)

The denominator P(B|A) represents the probability that we observed 6 repeated

monograms in 52 characters of text, given that our messages were not in-depth, that

is, they both represent random streams of text. This is given by

P(B|A) = (
1

26
)6(1 − 1

26
)(52−6)
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The numerator P(B|A) represents the probability that we observed 6 repeated mono-

grams in 52 characters of text, given that our messages are in-depth, that is, they

both represent streams of enciphered German text. Based on observation of the cor-

pus of naval Enigma messages, analysts determined that a monogram repeat occurs

with a probability of 1
17

. Then our numerator is given by

P(B|A) = (
1

17
)6(1 − 1

17
)(52−6).

It then follows that the observation B, that is, that our texts are shifted at a distance

of −13, is worth 13.59 (which Bletchley Park rounded to 13) hubdubs of information.

That is, this new observation increases the odds of the messages being in-depth by

a factor of 10
13
20 – giving roughly 5 to 1 odds in favor of the text being in-depth.

A scoring chart could be computed for all repeat structures of interest. Repeating

this same calculation for various possible text lengths and number of repeated mono-

grams, we may compute a table representing all hubdub values. The various tables

and sheets which follow throughout this section, when not explicitly cited otherwise,

were produced by our code available in the open-source project associated with this

thesis [39].
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40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 -7 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -10 -10 -10 -10 -10 -11 -11 -11 -11 -11 -12 -12

1 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -8 -8

2 0 0 0 0 0 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -4 -4 -4

3 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0

4 8 7 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 4 4 4 4 4 3 3

5 11 11 11 11 11 11 10 10 10 10 10 9 9 9 9 9 8 8 8 8 8 8 7 7

6 15 15 15 15 15 14 14 14 14 14 13 13 13 13 13 13 12 12 12 12 12 11 11 11

7 19 19 19 19 18 18 18 18 18 18 17 17 17 17 17 16 16 16 16 16 15 15 15 15

8 23 23 23 23 22 22 22 22 22 21 21 21 21 21 20 20 20 20 20 20 19 19 19 19

9 27 27 27 26 26 26 26 26 25 25 25 25 25 25 24 24 24 24 24 23 23 23 23 23

10 31 31 30 30 30 30 30 30 29 29 29 29 29 28 28 28 28 28 27 27 27 27 27 27

Figure 3.7: Scoring sheet for Banburismus

Such a table of hubdub values were called scoring sheets (sometimes called deciban

sheets from when calculations were done in decibans). The columns represent the

length of text being observed and the rows indicate the number of repeated mono-

grams. We now know how to score repeat structures which contain aligned mono-

grams, but we have yet to account for bigrams or trigrams.

3.3.7. Bonus Scoring System

Bletchley Park cryptanalysts used a bonus system intended to account for the differ-

ence in frequency between monograms, bigrams, and trigrams in German text. The

rule was – to find the value of a repeat structure find its row and column location,

then add one row for each bigram and four rows for each trigram [2, p. 105].

We will illustrate this rule by example. To find the approximate hubdub value for an

observed repeat structure of 6xx/55 we would examine row 6 column 55. However,

to account for the additional two bigrams, we must moved down two rows (one for

each bigram) to row 8 – giving a value of 20 hdB. Similarly, for a repeat structure
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of 43/40 we would examine row 4 column 40. Then, to account for the trigram we

would move down four rows to row 8 – giving a value of 23 hdB.

The extent to which this bonus system was accurate as opposed to an arbitrary

heuristic is hard to say. In order to determine the true hubdub value for a mes-

sage containing bigrams and trigrams we would need to examine the entire corpus of

Enigma message gathered for the purpose of Banburismus to determine the relative

frequency of bigrams and trigrams. Bletchley Park cryptanalyst, Hugh Alexander,

provides some n-gram frequencies [2, p. 96] as follows:

n-gram Probability

Monogram 1
17

Tetragram 100 · 1
264

Hexagram 15000 · 1
266

Sadly, this information does not include bigram or trigram frequencies, and given the

destruction of the vast majority of these intercepts [15, p. 29] [35, p. 193] it is unlikely

that such a quantity will be amassed so as to be able to prove the accuracy of this

bonus system.

There is no formal justification for the bonus system given in any historical accounts

we examined. However, by working backwards from the bonus system we will attempt

to reverse engineer the bigram frequency [13]. If this frequency lies within a reason-

able estimate of bigram frequencies observed in German at-large, we can assume that

this bonus system was likely based on careful analysis of actual bigram data in re-

lation to the scoring table. To our knowledge, this is the first formal justification of

the bonus scoring system used by Banburismus.
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Given a bigram frequency of β in our Enigma corpus, we can approximate that a

message with m monograms including b bigrams over n letters has a Bayes factor of

(β)b(1 − β)(n−1)−b

( 1
262

)b(1 − 1
262

)(n−1)−b
·

( 1
17

)(m−2b)(1 − 1
17

)(n−m)

( 1
26

)(m−2b)(1 − 1
26

)(n−m)
.

This makes several assumptions and overestimations. First, this assumes that having

bigrams and monograms are independent events. Second, this ignores the fact that

bigrams placed next to each other become higher order n-grams. However, this will

do well enough to serve as justification for the bonus system.

By saying that such a Bayes factor is roughly equivalent to that of the Bayes factor

of a message with m + b monograms in n letters, we get

(β)b(1 − β)(n−1)−b

( 1
262

)b(1 − 1
262

)(n−1)−b
·

( 1
17

)(m−2b)(1 − 1
17

)(n−m)

( 1
26

)(m−2b)(1 − 1
26

)(n−m)
≈

( 1
17

)m+b(1 − 1
17

)n−m−b

( 1
26

)m+b(1 − 1
26

)n−m−b

⇒ (β)b(1 − β)(n−1)−b

( 1
262

)b(1 − 1
262

)(n−1)−b
≈

( 1
17

)3b(1 − 1
17

)−b

( 1
26

)3b(1 − 1
26

)−b

⇒ (β)b(1 − β)(n−1)−b

( 1
262

)b(1 − 1
262

)(n−1)−b
≈ (

26

17
)3b(

17 · 25

16 · 26
)b

⇒ (β)b(1 − β)(n−1)−b

( 1
262

)b(1 − 1
262

)(n−1)−b
≈ (

262 · 25

172 · 16
)b.

We will now make another assumption. We may not know β but we do expect it to be

reasonably small. In an NSA paper regarding the index of coincidence, they estimate

the probability of bigrams in German to be about 0.0097 [19, p. 4]. We may expect

that β is reasonably close to, or at least in a similar magnitude to, this value. Given
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its small magnitude, the ultimate application of 20 log10 to each side will render the

term

(1 − β)(n−1)−b

(1 − 1
262

)(n−1)−b

insignificant in comparison to (β)b

( 1
262

)b
. Thus, as a simplifying assumption this can be

ignored. This leaves us with only a dependence on b, allowing us to approximately

guess β. We have

βb ≈ (
25

172 · 16
)b

Giving us β ≈ 0.00540, or as Hugh Alexander might write, β ≈ 3.65 · 1
262

. Given all

the simplifying assumptions made, this is still in the same magnitude of probability

given by the NSA. Further, this estimate falls in line with the bonus system since it

indicates that the index of coincidence of bigrams is roughly the cube of the index of

coincidence of monograms – that is

β · 262 ≈ (
1

17
· 26)3,

hence the addition of an extra row for each bigram. Alternately, to put it in terms of

logarithmic odds we have

20 log10(β · 262) ≈ 3 · 20 log10(
1

17
· 26)

that is, 1 bigram is worth 3 monograms in terms of hubdubs6. Thus we can say with

reasonable confidence that the bonus system rule is grounded in legitimate data of

bigram frequency. The same type of calculation can be done for trigrams, but the

goal of this section was to give justification to the reader that the bonus system is

6In fact, this equation can be used to crudely estimate the bigram frequency which makes the
bonus system exactly work. This is β ≈ 0.00529, but the above estimate provides arguably more
justification.
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more than just a heuristic.

3.3.8. Distance Charts

Another factor we must account for is rotor turnover. We began with pre-message

keys VFG and VFX, so all of this work has been assuming that only the last letter of

the message key differs between our text; however, if the middle rotor turns over be-

tween the enciphering of our two pre-message keys, this assumption no longer holds.

We must then ask the question, what is the likelihood that our two messages have

message keys differing by only their last letter? If we assume that π3(G) = π3(X) + n

(thus corresponding to an offset of +n), then this is the same as asking what is the

probability that a turnover did not occur between π3(G) and π3(X), that is, that a

turnover did not occur over n letters distance of encipherment?

Let S represent the probability we are using a non-naval Enigma rotor as our right-

most rotor (rotors I-V). If we are in this case, then we have a 1
26

chance of turnover at

any given letter, so the likelihood of turnover over a distance of n letters is n
26

. Thus

the likelihood of not turning over is 26−n
26

.

If we are in the case with 1 − S probability that we are using a naval rotor (ro-

tors VI-VIII), then we have a 1
13

chance of turning over at any given letter, so the

likelihood of not turning over is 13−n
13

. Note that for n > 13 we would have a proba-

bility of 1.

Then our probability of having not having rotor turnover occur over n letters distance
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of encipherment, which we will denote τn, is

τn =


S · 26 − n

26
+ (1 − S) · 13 − n

13
, for n < 13

S · 26 − n

26
for 13 ≤ n < 26

Given that, by protocol, at least one rotor must be a naval rotor, we will now calculate

S [21, Section 5.1].

We have 8 · 7 · 6 possible arrangements of rotors for all possible naval rotors, but

5 · 4 · 3 of these will contain no naval rotors. Additionally, only 7 · 6 · 3 of these will

have a naval rotor as their rightmost rotor, meaning that the probability of having a

non-naval rotor as your rightmost rotor (i.e. 1 − S) is

1 − S =
7 · 6 · 3

8 · 7 · 6 − 5 · 4 · 3
.

Thus S ≈ 0.543. With this we can now compute the probability that a given offset

represents message keys that only differ in their rightmost letter. In particular, we

will generate a distance chart which associates for each offset, the hubdub value

associated to this probability τN . We compute a chart with offsets from 0 to 25

and beneath we will show its associated hubdub value associated to the likelihood of

turnover.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 -1 -1 -2 -2 -3 -4 -4 -5 -6 -7 -8 -10 -11 -12 -13 -14 -15 -16 -17 -18 -20 -22 -24 -28 -34

Figure 3.8: Distance chart
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3.3.9. Distance Loss

We now need to consider how the probability of rotor turnover occurring effects

our original estimates. The probability of observing a repeated monogram is now no

longer just the frequency of monograms in German, but instead a weighted probability

depending on the offset being examined. In particular we define for an offset of n

ℓn := τn · (
1

17
) + (1 − τn)(

1

26
)

This is the probability of finding a repeated German monogram weighted by the

probability that the message produces a legitimate comparison of rotors with no

turnover between encipherment of the pre-message keys. We add in the alternative

possibility that rotor turnover did occur between encipherment of the pre-message

keys in which case we expect the distribution of monograms to be random. We will

say that ℓn represents the probability for a loss of 20 log10 τn hdB. Then, for each loss

corresponding to a particular offset, we must recompute our scoring sheets – though

now instead of using 1
17

as our probability we will use ℓn. Here is the scoring table

for a loss of −3 hdB,
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29 30 31 32 33 34 35 36 37 38 39 40

0 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -5

1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2

2 1 1 1 1 1 1 1 1 0 0 0 0

3 4 4 4 4 4 4 4 3 3 3 3 3

4 7 7 7 7 7 7 6 6 6 6 6 6

5 10 10 10 10 10 10 9 9 9 9 9 9

6 13 13 13 13 13 12 12 12 12 12 12 12

7 16 16 16 16 15 15 15 15 15 15 15 15

8 19 19 19 18 18 18 18 18 18 18 18 17

9 22 22 21 21 21 21 21 21 21 21 20 20

10 25 25 24 24 24 24 24 24 24 23 23 23

11 28 27 27 27 27 27 27 27 27 26 26 26

12 30 30 30 30 30 30 30 30 29 29 29 29

13 33 33 33 33 33 33 33 32 32 32 32 32

14 36 36 36 36 36 36 35 35 35 35 35 35

Figure 3.9: Scoring sheet for -3 hdB loss

3.3.10. n-grams

We have described scoring for monograms, bigrams, and trigrams, but messages can

easily contain repeats of many more characters. We know that sheets existed for

computing hubdub values of tetragrams and likely even higher n-grams, though how

high we cannot definitively say without more historical sources. We also found no

reference to tetragram sheets save for a couple values used for examples by Hugh

Alexander, thus we will use these same examples later for reference.

What we do know is that in order to calculate the log-odds of tetragrams, messages

were separated by the crib room into 20 categories labeled I-XX. Each category rep-

resented a message that was likely to contain a particular distribution of numerals

(since many German numbers are 4 letters). The exact nature of these categories
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were not discussed in any historical documentation found while researching for this

thesis.

Within each category there are 13 subdivisions corresponding to where a tetragram

occurred. The first 10 subdivisions represented a tetragram occurring in the first po-

sition, second position, and so on. The 11th subdivision corresponded to a tetragram

occurring between the 11th and 30th position. The 12th subdivision corresponded

to tetragrams occurring between the 30th position until the 30th to last position.

The 13th subdivision corresponded to tetragrams occurring in the last 30 letters of

the message. For each category and subdivision, a hubdub value was given [2, p. 107].

Filling in the values given by Hugh Alexander we provide a score sheet for tetra-

grams with missing values

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX

1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

12 ? ? ? ? ? ? ? ? ? ? 19 ? ? 23 ? ? ? ? ? ?

13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 3.10: Scoring sheet for tetragrams with the only known values filled in [2,
p. 106]

In practice, to score a pair of messages with repeat structure 114x/60, we would first

consult our tetragram scoring sheet for both our message categories and tetragram
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locations to get our log-odds score by summing the two entries7. We would then

consult the relevant score chart to score the remaining 7x/56 repeat structure, adding

these two scores together to get our total score for this repeat structure. With this,

we can now score any repeat structure, save for one exception we will now discuss.

3.3.11. Dummyismus

There is one more caveat we need to address before we are ready to fully score our

repeat structures. Based on observation, cryptanalysts at Bletchley Park noted that

some percentage of messages were followed by “dummy” messages some way through.

That is, short sections of German text were often followed by gibberish intended to

confuse cryptanalysts. Dealing with such messages became known as dummyis-

mus [21, Section 4.4].

Cryptanalysts in the crib room based on length, frequency, category, etc., would

place a blue line at some point in each message, beyond which they estimated there

was a 25% chance or higher of the message being a dummy. They noted this percent-

age on the sheet corresponding to each message [2, p. 104].

How they determined where to place the blue line and what percentage likelihood

beyond this point the message was a dummy is not discussed by Hugh Alexander and

likely depended on a number of additional factors which were known to the crib room

but may remain a mystery to us.

In practice, if we are scoring a repeat structure of 0/30 before the blue line and

113x/171 after it, we would first score 0/30 as we have done before. We then must

7Technically we would need to add in the loss corresponding to our offset when computing our
tetra scoring sheet. Alexander does not appear to do this but instead just subtracted the loss at the
end. This approximation works sufficiently well in many cases but it is worth noting this discrepancy.
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separately score the 113X/171 repeat structure on the sheet corresponding to its dis-

tance loss plus its dummyismus loss.

To see this, suppose our two messages have d1 and d2 probability, respectively, of

being a dummy after the blue line. Then there is a

(1 − d1) · (1 − d2)

chance of our messages both being genuine beyond the blue line. Thus we incur a

loss of

20log10((1 − d1) · (1 − d2))

hubdubs.

We can compute a lookup table in hdB for all percentages they encountered as follows,
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0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70%

0% 0 0 -1 -1 -2 -2 -3 -4 -4 -5 -6 -7 -8 -9 -10

5% 0 -1 -1 -2 -2 -3 -4 -4 -5 -6 -6 -7 -8 -10 -11

10% -1 -1 -2 -2 -3 -3 -4 -5 -5 -6 -7 -8 -9 -10 -11

15% -1 -2 -2 -3 -3 -4 -5 -5 -6 -7 -7 -8 -9 -11 -12

20% -2 -2 -3 -3 -4 -4 -5 -6 -6 -7 -8 -9 -10 -11 -12

25% -2 -3 -3 -4 -4 -5 -6 -6 -7 -8 -9 -9 -10 -12 -13

30% -3 -4 -4 -5 -5 -6 -6 -7 -8 -8 -9 -10 -11 -12 -14

35% -4 -4 -5 -5 -6 -6 -7 -7 -8 -9 -10 -11 -12 -13 -14

40% -4 -5 -5 -6 -6 -7 -8 -8 -9 -10 -10 -11 -12 -14 -15

45% -5 -6 -6 -7 -7 -8 -8 -9 -10 -10 -11 -12 -13 -14 -16

50% -6 -6 -7 -7 -8 -9 -9 -10 -10 -11 -12 -13 -14 -15 -16

55% -7 -7 -8 -8 -9 -9 -10 -11 -11 -12 -13 -14 -15 -16 -17

60% -8 -8 -9 -9 -10 -10 -11 -12 -12 -13 -14 -15 -16 -17 -18

65% -9 -10 -10 -11 -11 -12 -12 -13 -14 -14 -15 -16 -17 -18 -20

70% -10 -11 -11 -12 -12 -13 -14 -14 -15 -16 -16 -17 -18 -20 -21

Figure 3.11: Dummyismus scoring sheet

By adding the loss incurred from the dummyismus chart, to the loss incurred by the

distance chart, we get the total loss corresponding to a particular repeat structure.

To score this repeat structure we use the scoring sheet associated to that loss. We

now have all the details necessary to score to messages whose pre-message key differs

by only their last letter.

3.3.12. End-Wheel Comparison

We are finally ready to begin the process of decibanning [2, p. 105] based on end-

wheel comparisons. Many of Hugh Alexander’s scores do not align consistently with

reproduced sheets and there are many points at which he likely switches between

references to decibans and hubdubs. For this reason, we will be using numbers given

by Steven Hosgood in “All You Ever Wanted to Know About Banburismus but Were

Afraid to Ask” [21] as these more consistently align with the above description. The
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reader is recommended to examine this resource for more detailed discussion about the

scoring discrepancies between his analysis and those of Hugh Alexander. Regardless,

the underlying theory is the same and the above discussion should give the reader

and understanding of how such sheets looked and were used. We will give several

examples to illustrate the various scenarios of decibanning.

TYQ = TYB + 5.

Suppose we are examining the hypothesis that pre-message keys TYQ and TYB represent

an offset of +5. At this offset, we observe a repeat structure of 7xx/32, with no section

after the blue line. Consulting our distance chart from Figure 3.8, a +5 offset gives

us a loss of −3 hdB. We then get our score sheet calculated for a loss of −3 hdB

from Figure 3.9 and consult row 7 column 32. Then, according to our bonus system,

we move down one row for each bigram to row 9 – giving us a score of 21 hdB. We

now enter this score in a deciban sheet. The sheet will show each offset and the

associated score. Further, it will indicate which two letters are being compared, in

our case Q and B. In our case we would fill in

. . . -1 +1 +2 +3 +4 +5 +6 . . .

B . . . ? Q ? ? ? ? 22 ? . . . B

Figure 3.12: End-wheel comparison for Q and B

If we had other pre-message keys which added observations regarding these distances

(e.g. POQ and POB), then we would add another row below this and we could add up

each column to get a more accurate score for each offset.

ASL = ASJ + 5.

Suppose we are examining the hypothesis that pre-message keys ASL and ASJ represent

an offset of +5. At this offset, we observe a repeat structure of 0/30 before the blue
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line, and 113x/171 after the blue line. For the repeats before the blue line, consulting

our distance chart from Figure 3.8, a +5 offset gives us a loss of −3 hdB. We then

get our score sheet calculated for a loss of −3 hdB from Figure 3.9 and consult row

0 column 30 to get a score of −4 hdB. For the section after the blue line, the crib

room estimates a −4 hdB loss due to the possibility that either is a dummy message.

In this case, we must add this to our original loss of −3 due to distance, so we will

ultimately consult a score sheet calculated for a loss of −7 hdB. Such a score sheet is

167 168 169 170 171 172 173 174 175 176 177 178

10 5 5 5 5 5 5 4 4 4 4 4 4

11 7 7 7 7 7 6 6 6 6 6 6 6

12 9 9 9 9 8 8 8 8 8 8 8 8

13 11 11 11 11 10 10 10 10 10 10 10 10

14 13 13 13 12 12 12 12 12 12 12 12 12

15 15 15 14 14 14 14 14 14 14 14 14 14

16 17 16 16 16 16 16 16 16 16 16 16 16

17 18 18 18 18 18 18 18 18 18 18 18 18

18 20 20 20 20 20 20 20 20 20 20 20 19

19 22 22 22 22 22 22 22 22 22 22 21 21

20 24 24 24 24 24 24 24 24 24 23 23 23

21 26 26 26 26 26 26 26 26 26 25 25 25

22 28 28 28 28 28 28 28 28 27 27 27 27

23 30 30 30 30 30 30 30 29 29 29 29 29

24 32 32 32 32 32 32 31 31 31 31 31 31

Figure 3.13: Score sheet for −7 hdB loss

Given that our repeat structure after the blue line is 113x/171, we first consult row

11 column 171. Then, according to our bonus system, we move down one row for the

bigram and four rows for the trigram to row 16 – giving us a score of 16. Adding

these two scores together we get a total score for this offset of 12 which we would
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similarly record in the end-wheel comparison sheet for L and J.

Eventually, we will have computed scores across many messages and many offsets,

and our deciban sheet will slowly be filled out. An example deciban sheet is given for

comparing V and W derived from pre-message keys ZOV/ZOW and GMV/GMW respectively.

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13

V -3 -3 -3 0 -8 6 -6 6 -12 -8 -8 23 0 W 3 -12 -8 7 -3 -6 -6 -2 1 -7 6 3 -2 V

W -1 2 -2 9 -2 -1 -7 17 2 2 -5 4 -24 W -6 -6 4 -3 -4 2 4 5 -1 -9 -7 -2 0 V

Sum -4 -3 1 9 -10 5 -13 23 -1 -6 -13 27 -24 -3 -18 -4 4 -7 -4 -2 3 0 -16 -1 1 -2 Sum

Figure 3.14: End-wheel deciban sheet for V and W with summation on the bottom [21,
Section 5.6]

After all this work we can now determine that the most likely candidate is that

π3(W) = π3(V) − 2

with a total score of 27 hdB. We can now add in the Bayesian prior representing

the initial odds that any given offset is correct, which we denoted O(A). We have

that there are 50 possible offsets, all of which are equally likely, giving us an extra

factor of −34 hdB to get the true odds of our candidate as −7 hdB or roughly 2 to

1 odds against our candidate. These sheets will ultimately be used to disambiguate

our deduced rotor possibilities. Later, when we show deciban sheets, we will show

scores already being adjusted by the prior odds to make our work easier.

3.3.13. Middle-Wheel Comparison

So far we have only examined pre-message keys with their first two letters in common.

In theory, there is no reason the same process cannot be applied to pre-message keys

with only their first letter in common, although this requires significantly more offsets
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being considered and significantly reduced odds.

We might think we need to handle all offsets from −650 to +650 but in practice, naval

Enigma operating procedure restricted message lengths to 250 characters. Thus, we

can only examine offsets of −250 to +250. This is still an incredible number of off-

sets to check by hand. To handle this, a section at Bletchley Park known as the

Freebornery used tabulating machines to find repeats of length 4 or greater, since

shorter n-grams were not worth the considerable odds against such a large array of

candidates [2, pp. 102–103]. Messages with 4 or more repeats were compiled into a

tetra catalogue as follows

Pre-Message Key Position Letters
AJU 4.8 LK TNSV RAJTLK

BYX 6.5 CS TNSV AVYTXK

ARX 5.6 AU TNTB LYDRMJ

AYR 11.11 XU TNTB LYDACV

CRS 6.1 NC TNXJ AVUSYM

CQT 8.4 NL TNXJ BRXSTO

Table 3.2: Example tetragram catalogue [2, p. 98]

Here we only underline repeats which are longer than 4 letters as these have the

best chance at being legitimate. We think of each rightmost rotor position as having

an alphabet of 26 letters before it turns over to a new alphabet of 26 letters. The

left number in the position column denotes which alphabet we are in and the right

number indicates which letter we are in that alphabet when the n-gram occurred. In

this sense our first tetragram entry with a position of 4.8 means that the tetragram

occurred in the 8th letter of the 4th alphabet, thus this occurred at the 26 · 3 + 8 or

86th letter of the message. It is worth noting that in this notation, for pre-message

keys which differ by only their rightmost letter (as in the last section) an offset of +n

can be written as +0.n. In the end this will allow us to have one sheet with consistent
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notation representing all our analyzed messages.

Left Rotor Distance Charts. To score these messages the first thing we must do

is generate a new distance chart for all possible rotor turnovers between all −250 to

+250 offsets. As before we would like to get a probability τn that our offset represents

a legitimate comparison between message keys with their leftmost letter in common.

This is the same as asking the probability that turnover of the leftmost rotor dd

not occur. Now we must consider more scenarios than in our one rotor analysis.

Recall that there are 8 · 7 · 6 total arrangements of rotors, but 5 · 4 · 3 of these are

not allowed since they do not include any naval rotors. Then there are 276 total

rotor combinations we are examining. The two rightmost rotors can be in one of the

following cases

• Two non-naval rotors – For each of the 3 naval rotors as the lefthand rotor we

have 5 · 4 possible non-naval rotor combinations for the right two rotors, giving

60 such combinations.

• Two naval rotors – We have 3 · 2 possible naval rotor combinations for the right

two rotors, leaving 6 remaining rotor possibilities for the leftmost rotor, thus

giving 36 such combinations.

• Middle naval rotor and rightmost non-naval rotor – We have 3 · 5 possible

naval rotor combinations for the right two rotors, leaving 6 remaining rotor

possibilities for the leftmost rotor, thus giving 90 such combinations.

• Middle non-naval rotor and rightmost naval rotor – As above this has 90 com-

binations.

For each of this cases we have varying likelihood of rotor turnover. Recall that

when dealing with the leftmost rotors period of turnover we must consider double
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stepping as described in section 1.1.2. Thus we have

• Two non-naval rotors – Leftmost rotor turns with a 26 · 25 = 650 period.

• Two naval rotors – Leftmost rotor turns with a 13 · 12 = 156 period.

• Middle naval rotor and rightmost non-naval rotor – Leftmost rotor turns with

a 26 · 12 = 312 period.

• Middle non-naval rotor and rightmost naval rotor – Leftmost rotor turns with

a 13 · 25 = 325 period.

Using the same arguments to compute τn as in Section 3.3.8 we get

τn =



60
276

· 650−n
650

+ 90
276

· 325−n
325

+ 90
276

· 312−n
312

+ 36
276

· 156−n
156

, for n < 156

60
276

· 650−n
650

+ 90
276

· 325−n
325

+ 90
276

· 312−n
312

, for 156 ≤ n < 312

60
276

· 650−n
650

+ 90
276

· 325−n
325

, for 312 ≤ n < 325

60
276

· 650−n
650

for 325 ≤ n < 650

This lets us compute τn from up to an offset of ±650 but as mentioned we will only

need this for ±250. We can now generate a distance chart as before but now we

consider each value from in the range −250 to +250.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2

2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5

5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6

6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7

7 -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -10 -10 -10 -10 -10 -10 -10 -10 -10

9 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -12 -12 -12 -12 -12 -12

Figure 3.15: Distance chart for left rotor turnover

With this chart we now know what the loss for our scoring sheet needs to be for a

particular message pair. From here we can use our exact same scoring method to

compute the log-odds of score for entries in the tetragram catalogue. To get the true

odds of our candidate offset we must consider the Bayesian prior representing the

initial odds that any given offset is correct. We have that there are 1300 possible

offsets, all of which are equally likely, giving us an extra factor of −62 hdB to get the

true odds of our candidate.

Score Conversion. A candidate offset on the tetragram catalogue does not just

store information about the middle wheel but also additional information about the

end wheel which we can use to further increase accuracy of our end wheel comparison.

In order to do this, we need to determine our score with respect to the Bayesian prior

for representing the initial odds of an offset in ±25 being correct. Given that we

have used the same scoring system regardless of analyzing middle-wheel or end-wheel

comparisons, we have that the Bayesian factors we computed would be the same

whether we were analyzing middle-wheel or end-wheel comparisons. Thus, we need

only account for the difference in the prior odds between middle-wheel and end-wheel

comparisons. We have −62 hdB prior log-odds for middle-wheel comparison and −34
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hdB log-odds for end-wheel comparison. Thus to convert our score to that of an end

wheel comparison we must incur a loss of −34−62 = −28 hdB. If p is the probability

that our messages are in-depth, then we have that the odds with a loss of −28 hdB

incurred is

p · 10
−28
20 + (1 − p)(1 − 10

−28
20 )

(1 − p)

= 10
−28
20

p

1 − p
− 10

−28
20 + 1

Note that p
1−p

is just our current odds and the above equation is our new odds. Then

for a score of s, we have 10
s
20 = p

1−p
. Thus, to convert from a middle-wheel to an

end-wheel comparison, we compute

20 log10(10
s
20 · 10

−28
20 − 10

−28
20 + 1).

We can compute a conversion chart from middle-wheel scores to end-wheel scores as

follows.

Middle-wheel Score 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

End-wheel Score 1 1 1 2 2 2 2 3 3 4 4 4 5 5 6 6 7 8 8 9 10 10 11 12 13

Figure 3.16: Chart to convert middle-wheel scores to end-wheel scores

Now we can include pre-message keys with only their left letter in common in our

deciban sheets for end-wheel analysis.

3.3.14. Scritchmus

We have developed a lot of theory to score repeat structures and various letter offsets

so it is best to recap what we get at the end of this analysis. We have,

• A list of repeat structures and their scores which we will call a catalogue. This
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is just a scored tetra catalogue combined with a scored end-wheel catalogue. An

example is as follows8

Catalogue

(1) ARX = AYR + 6.5 Octagram Certain

(2) NTP = NXU + 2.15 Enneagram Certain

(3) LLK = LAP + 9.24 Enneagram Certain

(4) VRN = VXR + 0.21 166/95 100 : 1 on

(5) STK = STN + 0.7 2333/256 15 : 1 on

(6) RWL = RWC + 0.13 144/100 6 : 1 on

(7) BVY = BLT + 1.6 195/140 5 : 1 on

(8) UJA = UMY + 5.3 185/210 3 : 2 on

(9) BAQ = BWS + 0.17 207/274 50 : 1 on

Figure 3.17: Catalogue of repeat structures [2, p. 99]

• A list of deciban sheets for a variety of letters combinations compiled from

summed likelihoods of letter offsets gleaned from both end-wheel and middle-

wheel comparisons. One such deciban sheet is as follows,

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

T 1 2 7 7 4 3 H 5 3 1 7 4 7 T

Figure 3.18: End-wheel deciban sheet for H and T [2, p. 101]

The process of combining these two pieces of information to recover the middle and

end rotors became known as scritchmus [21, Section 7.0].

Determining π3. We are now going to determine the mapping of the third letter

in the pre-message key π3. We begin by making a chain of letters whose distances

are deduced from the likely candidates from our catalogue 3.17. Repeat (1) indicates

8For sufficiently high odds we just write “certain” as it may as well be.
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that π3(X) = π3(R) + 5. Let us make an initial assumption that π3(R) = M then we

deduce that π3(X) = M + 5 = R. We can place these in an alphabet as follows

ABCDEFGHIJKLMNOPQRSTUVWXYZ

............R....X........

In this way, adding in repeats (2)-(5) we get from our initial hypothesis π3(R) = M,

ABCDEFGHIJKLMNOPQRSTUVWXYZ

P......N...UR.K..X........

Recall that π3 must be an involution so if π3(R) = M we must also have π3(M) = R, but

of course this contradicts our derivation that π3(X) = R. Then our initial hypothesis

π3(R) = M is likely wrong. We must therefore continue through all hypotheses for the

value of π3(R). We can eliminate possibilities as follows,
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Notes

P . . . . . . N . . . U R . K . . X . . . . . . . . Contradicts reciprocal R and M

. P . . . . . . N . . . U R . K . . X . . . . . . . Contradicts reciprocal P and B

. . P . . . . . . N . . . U R . K . . X . . . . . . Contradicts reciprocal N and J

. . . P . . . . . . N . . . U R . K . . X . . . . . Contradicts reciprocal R and P

. . . . P . . . . . . N . . . U R . K . . X . . . . Contradicts reciprocal P and E

. . . . . P . . . . . . N . . . U R . K . . X . . . Contradicts R cannot be self-reciprocal

. . . . . . P . . . . . . N . . . U R . K . . X . . Contradicts N cannot be self-reciprocal

. . . . . . . P . . . . . . N . . . U R . K . . X . Possible

. . . . . . . . P . . . . . . N . . . U R . K . . X Contradicts reciprocal P and I

X . . . . . . . . P . . . . . . N . . . U R . K . . Contradicts U cannot be self-reciprocal

. X . . . . . . . . P . . . . . . N . . . U R . K . Contradicts reciprocal K and Y

. . X . . . . . . . . P . . . . . . N . . . U R . K Contradicts reciprocal X and C

K . . X . . . . . . . . P . . . . . . N . . . U R . Contradicts reciprocal X and D

. K . . X . . . . . . . . P . . . . . . N . . . U R Contradicts reciprocal P and N

R . K . . X . . . . . . . . P . . . . . . N . . . U Possible

U R . K . . X . . . . . . . . P . . . . . . N . . . Contradicts P cannot be self-reciprocal

. U R . K . . X . . . . . . . . P . . . . . . N . . Contradicts reciprocal X and H

. . U R . K . . X . . . . . . . . P . . . . . . N . Contradicts reciprocal R and D

. . . U R . K . . X . . . . . . . . P . . . . . . N Possible

N . . . U R . K . . X . . . . . . . . P . . . . . . Contradicts reciprocal K and H

. N . . . U R . K . . X . . . . . . . . P . . . . . Contradicts reciprocal U and F

. . N . . . U R . K . . X . . . . . . . . P . . . . Possible

. . . N . . . U R . K . . X . . . . . . . . P . . . Contradicts reciprocal N and D

. . . . N . . . U R . K . . X . . . . . . . . P . . Contradicts reciprocal X and O

. . . . . N . . . U R . K . . X . . . . . . . . P . Contradicts reciprocal R and K

. . . . . . N . . . U R . K . . X . . . . . . . . P Contradicts reciprocal U and K

In the end we arrive at only 4 possible alphabets. By filling in values given by the

reciprocal nature of π3 we arrive at these four alphabets [2, p. 100]:
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Notes

(a) . . . . . . . P . . V . . O N H . T U R S K . Y X . Picks up (7), denies (8)

(b) R . K . . X . . . . C . . V P O . A . . Z N . F . U Denies (6)/(8)

(c) . . . U R . K . . X G . . Z . S . E P . D . . J . N Denies (9)

(d) . . N . . . U R . K J . X C . V . H . . G P . M . .

After filling in the alphabets further, we notice that some alphabets either contradict

(deny) or support (pick up) the remaining hypotheses we have not included, that is,

hypotheses (6)-(9). As (6) and (9) are both strong hypotheses, this will discount the

validity of alphabets (b) and (c). Leaving us with remaining alphabets (a) and (d).

Note that the denial of (8) for alphabet (a) is not that strong of an indicator against

this alphabet since (8) has roughly even odds of being correct and picking up (7) is

such that it outweighs the denial of (8) anyways.

We now need to determine which of (a) or (d) is correct. To do this we can turn

to our deciban sheets 3.18. For example, we note that alphabet (a) is such that

π3(T) = π3(H) + 2 which is evidence 3 hdB in favor of this alphabet. Alexander’s

example found, that after adding up all the offsets in alphabet (a) against deciban

sheets, we find that the alphabet has a total score of 54 hdB [2, p. 101], almost cer-

tainly indicating that alphabet (a) is our correct choice for π3.

We can now further fill in the alphabet from hypotheses that got picked up. We

begin by including hypothesis (9) and using π3’s reciprocal property to get the alpha-

bet

ABCDEFGHIJKLMNOPQRSTUVWXYZ

.......P..VQ.ONHLTURSK.YX.
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Now we that we have add L to our alphabet we can make use of hypothesis (6) to get

ABCDEFGHIJKLMNOPQRSTUVWXYZ

..DC...P..VQ.ONHLTURSK.YX.

With a large catalogue, we will often be able to fill out the entire alphabet in this

way.

Recovering the End Rotor. We will now examine what possible end rotors could

be used that corroborate our alphabet for π3. Consider that for our end-wheel compar-

isons like hypothesis (5) and (6), we have strong indication that no turnover occurred

during these repeat structures. Therefore we may assume that no turnover occurred

between the encipherment of C and L, and no turnover occurred between N and K.

Thus, we can assume no turnover occurred between C and K. Given that this is a

stretch of 18 letters, we can immediately eliminate the possibility that the rightmost

rotor is a naval rotor as it would have turnover at least every 13 letters. That leaves

us with rotors I-V. Rotors I, II, and IV, all have turnover between C and K. Thus we

are left with only the possibilities that the rightmost rotor is III or V – narrowing

our possibilities from 8 to 2.

Recovering the Middle Rotor. Determining the middle rotor is much the same

as the above procedure. Our goal is to get a likely alphabet for π2 and determine

where turnover of the leftmost wheel occurred so as to eliminate possible middle ro-

tors. The only difference is that, based on our above analysis, we now strongly suspect

that turnover of the rightmost rotor occurs between K and C. Thus, a hypothesis like

(2) which asserts that, in the middle wheel alphabet T = X + 2, must be adjusted

to state that T = X + 3, since we know turnover of the rightmost rotor occurred in
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passing from P to U. Adjusting our offsets as necessary we can perform the exact same

analysis as above to determine a small set of possibilities for the middle rotor.

All in all, this process can reduce the 276 rotor orderings of the naval Enigma to

only a handful of possibilities, thus making searching for naval settings on the Bombe

tractable. However, in order to actually make use of the Bombe we still need a crib

to determine valid settings.

3.3.15. Running the Bombe

By this point we have determined a handful of possible rotor orderings, and we have,

with luck, determine the entirety of permutations π2 and π3. Note though that the

permutations π2 and π3 are themselves plaintext-ciphertext pairings! For example, if

we determine π2 and π3 to be

ABCDEFGHIJKLMNOPQRSTUVWXYZ

π2 KJNRPQUOLBAISCHEFDMYGZXWTV

π3 OVJWLSKMUCGEHTAXRQFNIBDPZY.

Then we get a series of 2 letter plaintext-ciphertext pairings, such as

? A K

? K G

1 2 3

Using these plaintext-ciphertext mappings we can construct a menu as follows:
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H O A K G U I L E

M S F Q R D W X P

C N T Y

J B V Z

ZZBZZB

ZZB ZZB ZZB ZZB

Z
Z
B

ZZBZZB

ZZB ZZB

ZZBZZB

ZZC ZZC ZZC ZZC

ZZCZZCZZCZZC

Z
Z
C

ZZC

Z
Z
C

ZZC

Z
Z
C

Figure 3.19: Menu constructed from Banburismus

Equipped with this menu, the Bombe can now be run for our limited set of rotor

orderings and can deduce the steckerings and positions of rotors necessary to produce

our menu – that is, the settings which convert pre-message keys into message keys.

The EINS Catalogue. Recall from Section 3.2.5, that the settings given by a stop of

the Bombe do not necessarily correspond to the true ring settings. In order to deter-

mine the true ring settings we would normally use our plaintext-ciphertext pairing to

determine at which point turnover occurred and adjust our ring setting as necessary.

However, our cribs consist exclusively of two letter plaintext-ciphertext pairings, af-

ter which the message is enciphered with the message key and is thus meaningless.

Therefore we can no longer deduce at what point during our message turnover occurs,

and thus can no longer use this method to determine the true ring setting.

In analyzing naval Enigma traffic, cryptanalysts found that nearly all messages (around

90%) contained the word EINS (German for “one”) at some point in the message [37,

pp. 140–142]. This makes sense for a number of reasons:

(1) Naval messages regularly dealt with numbers, all of which needed to be typed

out in full. This statistical observation is what made the use of the tetra cata-
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logue so valuable [21, Section 9.3].

(2) An odd quirk known as Benford’s law tells us that 1 appears more commonly

than any other leading digit in numerical data [5, p. 556].

(3) EINS shows up naturally in many German words either as a sub-component of

a word or when spanning across two words [21, Section 9.3].

Given that we have a known rotor ordering, steckering, and ring/window setting

whose relative distance is correct, but may need to be adjusted to get the true ring

setting, we can compile a list of all 263 encipherments of EINS which preserve the rel-

ative distance between our ring and window setting. Originally this process had to be

done by hand with catalogues known as corsets but a machine called the test-plate

or baby was created which automatically enciphered EINS at all such positions into

an EINS catalogue [37, pp. 140–142].

The catalogue could then be used to determine locations within our message cor-

pus, along with settings, that would produce EINS. If we then continue deciphering

our message from the start of the EINS location, as in Section 3.2.5, we can decipher

plaintext until we encounter gibberish and adjust the right, and subsequently middle,

ring setting until we have deduced the entire ring setting. With this final component,

we are now able to completely decipher naval Enigma messages.

It is clear from the amount of messages, sheets, and scores that need to be compared

and tabulated that Banburismus was a great deal of work. Alexander estimates that

an average day involved 400 messages with an average length of 150 characters. In

total around 6000 comparisons needed to be made all of which needed to be scored

and counted [2, p. 109]. Particular credit should be given to whom Alexander noted
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was “one of the best Banburists”, Joan Clarke [2, p. 73]. Not only was she an excep-

tional Banburist, she was also one of only a handful of female cryptanalysts working

at Bletchley Park.

The work done by Banburists provided crucial information on naval operations, in-

cluding U-Boat attacks which were crippling supply lines and starving Britain.
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Stops

The Turing-Welchman Bombe was remarkably adept at computing daily keys in a

tractable manner. In optimal conditions, with a well-crafted and fortunate menu, the

Bombe could run in as little as 20 minutes and produce exactly the daily key needed

to decrypt messages [2, p. 12]. To approach these optimal conditions, we must con-

sider what it means for one menu to be stronger than another. In this chapter, we

will explore the relationship between menus and the number of stops the Bombe is

expected to encounter. Equipped with this information, a cryptanalyst would be able

to select the menu that yields the fewest stops.

Each stop consumed precious time, as operators needed to verify whether they cor-

responded to a valid key. Therefore, menu selection becomes an integral factor in

reducing the time between intercepting transmissions and recovering the key for that

day. Even a reduction of minutes could provide the slight edge that the Allies needed

to preempt an attack. Thus, developing an accurate model by which we can correlate

menus to their expected number of stops is a matter of strategic urgency.
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Section 4.1

Turing’s Model

We begin by describing the model for the expected number of stops given by Turing

himself in The Prof’s Book [37, pp. 112–116]. Turing approaches this problem not

by computing the expected number of stops itself, but instead by computing the ex-

pected number of normal stops over all steckering hypothesis. These normal stops

are described by Turing as, “positions at which by altering the point at which the

current enters the diagonal board, one can make 25 relays close” [37, p. 112]. In the

case of a single loop in our menu, this is equivalent to the statement that the resulting

loop in the Bombe has a singleton cycle. If we apply current to this singleton cycle

all the remaining relays will close. For now we will ignore the impact of the diagonal

board.

Turing considered a menu in which no loops occurred which he called a web. In

this case every position of the Bombe and every initial steckering hypothesis would

create a normal stop, as there is no feedback necessary to electrify any additional

wires on a given cable. Turing considers not only the 263 possible rotor positions of

the Bombe, but also the 26 initial steckering hypotheses we could input. In our case,

all steckering hypotheses and all rotor configurations produce a normal stop so we get

264 total normal stops over all steckering hypotheses. In our simplified model with

only 4 characters this may look as follows,
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a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

π

Turing then considered the effect of adding an edge to our menu which would form

a loop, he called such an edge a chain-closing constatation. He wanted to deduce

the likelihood that adding such an edge turns our normal stops into anything other

than a normal stop. We will denote this chain-closing edge as s. Our diagram would

then be,

s

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

π

Suppose that before adding the edge s, a particular steckering hypothesis S(x) = y,

produces a normal stop. What is the probability that by adding the permutation s

we are now no longer in the situation of a normal stop?

Given that by supposition electrifying wire xy through π has only a single live wire,

the permutation s need only connect the live wire to any of the 3 remaining non-

electrified wires to arrive at anything other than a normal stop. Thus there is 3
4

chance that s ◦ π is no longer a normal stop. Conversely, there is a 1
4

chance that s
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fails to remove our normal stop.

In the case of a 26 character alphabet, the same logic follows, and we have a 1
26

chance that a chain-closing constatations fails to remove a normal stop. Given that

we originally expected 264 normal stops over all steckering hypotheses without any

closures, we would now expect that adding a chain-closing constatation to our menu

would have 1
26

as many normal stops. Thus adding one closure to our menu now

brings the expected number of normal stops over all steckering hypotheses down to

264−1 = 263.

Turing extends this argument to explain that, for a menu with c loops (which he

called closures) we would expect 264−c normal stops over all steckering hypothe-

ses [37, p. 116].

4.1.1. Dixon’s Theorem

A natural question arises - why should the number of normal stops over all steckering

hypotheses approximate the number of actual stops the Bombe encounters? First,

we are only considering a subset of possible stops so, from this perspective, we might

expect our approximation to be under-representing the true number of stops. Second,

we are considering these stops over all steckering hypotheses so, from this perspective,

we might expect our approximation to be around 26 times greater than the actual

answer. Yet, testing Turing’s formula against the actual Bombe, in many cases, we

find that his approximation of 264−c falls roughly in line with the actual number of

stops. To answer this question we must show the following:

(1) The number of normal stops approximates the number of stops.

(2) The consideration of all 26 steckering hypotheses for each rotor position averages
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out in such a way that we only account for 1 steckering hypothesis per each rotor

position thus removing any double counting of a particular rotor position.

Transitive Subgroups. To show these two points, we require additional mathematical

tools. We first need to translate our mechanical understanding of the Bombe’s elec-

trification of wires into a mathematical one. For a single loop this is quite trivial. If

the permutation representing our loop is π, then the number of normal stops over all

steckering hypotheses is just the number of singleton cycles in π’s cycle decomposition.

Once we add in additional closures this becomes slightly more complicated. Suppose

we have two closures, with each separate closure being represented by the permuta-

tions π and δ respectively.

π3

a

b

c

d

π1

a

b

c

d

π2

a

b

c

d

a

b

c

d

a

b

c

d

δ2

a

b

c

d

a

b

c

d

δ1

a

b

c

d

δ3

a

b

c

d

A

B

B

C

C

How can we determine which wires are connected to which in this complex arrange-

ment of permutations? To answer this we introduce

150



4.1 Turing’s Model Stops

Definition 4.1. The subgroup of Sn generated by two permutations σ, τ ∈ Sn is

⟨σ, τ⟩ := {σa1τ b1 . . . σakτ bk | k ∈ N, ai, bi ∈ Z}

This is the set of all group elements obtained by applying finite compositions of σ, τ ,

and their inverses [4, p. 47].

Consider how this relates to our two loop Bombe arrangement with π and δ. The

electricity is free to flow through any number of iterations forwards and backwards

through both π and δ. Applying a current at some input wire will propagate in such

a way that it reaches possible letters which can be reached by some sequence of ap-

plications of π, δ, and their inverses. Then on cable A, applying a current at some

input x can only reach wire y on that cable if ∃ σ ∈ ⟨π, δ⟩ such that σ(x) = y. If we

want to know for a given input wire, what other wires it can reach, we need to know

which letters are connected to which through permutations in ⟨π, δ⟩.

We note that ⟨π, δ⟩ has a natural group action on N4 given by

σ · x := σ(x) for σ ∈ ⟨π, δ⟩ and x ∈ N4.

Consider an orbit for this group action. That is, for x ∈ N4 we have

⟨π, δ⟩ · x := {σ(x) | σ ∈ ⟨π, δ⟩}.

We can think of this orbit as all elements in N4 which x can reach via some sequence

finite compositions of π, δ, and their inverses. This is exactly analogous to the set of

wires on cable A which can be reached from an input on wire x. Then these orbits

partition N4 and tell us which wires are in a connected loop in our Bombe arrange-

ment.
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In this way, the partition given by the set of orbits N4/⟨π, δ⟩ represents which wires

are connected to which wires in our diagram. If N4/⟨π, δ⟩ = {{a, . . . , d}} then we

know that electrifying any wire on cable A will electrify all wires in the diagram. In

such a case we say that ⟨π, δ⟩ forms a transitive subgroup of S4. Formally,

Definition 4.2. Let H ≤ G be a subgroup of G which acts on a set X. We say H

acts transitively on S ⊆ X provided that

∀ a, b ∈ S, ∃ σ ∈ H s.t. σ(a) = b.

If H acts transitively on X we say that H is a transitive subgroup of G [4, p. 177].

Consider how this relates to our single loop example.

π3

a

b

c

d

a

b

c

d

π1

a

b

c

d

a

b

c

d

π2

a

b

c

d

A

B

C

In this loop, we have that on cable A, wires a and d are connected, and wires b and c

are connected. We explained that his could be simply determined by examining the

cycle decomposition of π which in this case is

(ad)(bc).

However, we can get the exact same information by simply considering the set orbits

of ⟨π⟩ acting on {a, . . . d}, which would give us

{{a, d}, {b, c}},
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giving us an equal picture of the connections between wires on the A cable. Addition-

ally, shifting to this view means that rather than saying that the entire loop becomes

electrified when π has a 4 cycle, we say that this occurs when ⟨π⟩ forms a transitive

subgroup of S4.

This description is more robust in that it can handle any number of closures and

gives us a picture of which wires are connected to which on a particular cable.

Distribution of Stops. Equipped with this mathematical framework, we are now

ready to address Turing’s model. We will classify stops by the cardinality and mul-

tiplicity of sets in the partition given by the orbits described above. For example, if

a set of orbits is

{{a, . . . , m}, {n, . . . , z}}

we would say this stop has a 132 stop type. In general, if the orbits of a subgroup are

sets ω = {ω1, . . . , ωk}, we say that this represents a 1m1 . . . nmn stop, where mi is the

number of sets in ω with cardinality i – that is mi = |{j ∈ Nk | |ωj| = i}|.

This is effectively analogous to the cycle type of a permutation, but in order to

extend this to multiple loops we must frame it in this description of partitions given

by orbits of subgroups. Where context allows, we will refer to these interchangeably

as either orbit types, stop types, or partition types.

In Turing’s model, such a 132 stop type as above, would count as 0 normal stops

over all steckering hypotheses. In the actual running of the Bombe this would consti-

tute a single stop. Further, a 13231 stop type in Turing’s model would be considered

as 3 normal stops over all possible steckering hypotheses. In reality, this would only
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constitute a single real stop in the running of the Bombe. This highlights the two

qualms that we are trying to reconcile in Turing’s model, the absence of abnormal

stops, and the over-counting of normal stops.

We begin by considering the case of two closures, where at each rotor position of

the Bombe, we have some permutations π and δ. What is the distribution of stop

types? For now we will assume that any loop in a particular configuration of the

Bombe represents a uniformly random permutation. We will later refine this, but as

a heuristic it serves to justify Turing’s model. We want to know what stop types are

most common. That is, given two uniformly random permutations π and δ, what is

the distribution of orbit types generated by the subgroup ⟨π, δ⟩? This question was

answered by John Dixon in 1969 in his paper “The Probability of Generating the

Symmetric Group” [16].

Theorem 4.3 (Dixon’s Theorem). Given two uniformly random permutations σ and

τ in Sn, the probability that ⟨σ, τ⟩ has an orbit type of 1m1 . . . nmn is

1 − 1

n!

∑
1ℓ1 ...nℓn ̸=1m1 ...nmn

n∏
i=1

(i!ti)
ℓi

ℓi!

where ti is the probability that two uniformly random permutations in Si form a tran-

sitive subgroup.

Proof. Let ti be the probability that for two uniformly random x, y ∈ Si, ⟨x, y⟩ acts

transitively on Ni.

Fix a partition ω = {ω1, . . . , ωk} of Nn. We want to know the number of pairs

x, y ∈ Sn such that ⟨x, y⟩ have orbits which are exactly the sets in our partition. For

⟨x, y⟩ to contain an orbit ωi, we must have that ⟨x, y⟩ acts transitively on ωi. This
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also means that the restriction of the action of ⟨x, y⟩ to ωi is a transitive group action.

The total number of ways to define such a restriction on ωi, without any constraints

on transitivity is (|ωi|!)2. So, to get the number of restrictions which represent a

transitive action we compute (|ωi|!)2t|ωi|. To contain all orbits ωi, we must have that

when restricted to each ωi, ⟨x, y⟩ acts transitively. Thus there are∏k
i=1(|ωi|!)2t|ωi|

permutations x, y ∈ Sn such that ⟨x, y⟩ generates the orbits ω.

Supposing ω has partition type 1ℓ1 . . . nℓn , then our above argument can be framed

as stating that there are ∏n
i=1 ((i!)2ti)

ℓi

permutations x, y ∈ Sn such that ⟨x, y⟩ has an orbit type equivalent to the partition

type of ω.

To obtain the total number of such x, y ∈ Sn that generate a subgroup with or-

bit type 1ℓ1 . . . nℓn , we multiply by the number of partitions of Nn with this type, of

which there are

n!∏n
i=1 (i!)

ℓiℓi!
1.

We then compute the probability that x, y ∈ Sn do not generate orbits with orbit

type 1m1 . . . nmn , by computing the total number of x, y ∈ Sn which generate any

other orbit type, and dividing by (n!)2 (i.e. the total number of pairs of permutations

1This fact will be addressed later, but it follows from Corollary 1.6 with only minor argumentative
changes.
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in Sn). This is precisely,

1

(n!)2

∑
1ℓ1 ...nℓn ̸=1m1 ...nmn

n!∏n
i=1 (i!)ℓiℓi!

n∏
i=1

((i!)2ti)
ℓi

=
1

n!

∑
1ℓ1 ...nℓn ̸=1m1 ...nmn

n∏
i=1

(i!)2ℓitℓii
(i!)ℓiℓi!

=
1

n!

∑
1ℓ1 ...nℓn ̸=1m1 ...nmn

n∏
i=1

(i!)ℓitℓii
ℓi!

.

The inverse of this probability is the probability that we generate exactly the orbit

structure we specified, thus giving us the desired result,

P(⟨σ, τ⟩ has orbit type 1m1 . . . nmn) = 1 − 1

n!

∑
1ℓ1 ...nℓn ̸=1m1 ...nmn

n∏
i=1

(i!ti)
ℓi

ℓi!
.

It should be noted that the actual statement of this proof is a formula for tn which

is then shown to asymptotically approach 1 as n increases. In the context of the

above theorem, tn can be solved by computing the probability that ⟨σ, τ⟩ has an

orbit structure of n1, that is, the subgroup formed is transitive. For such an orbit

structure, each ti given in our equation necessarily has i < n so we can recursively

solve for tn. With the ability to solve for any tk for k ∈ N we can then go and compute

the probability of any particular orbit type via the above theorem.

4.1.2. Turing’s Model’s Accuracy

We can now compute, for the case of two loops, what the probability of a particular

stop type is. Computing the above for a 261 orbit type tells us that roughly 95.9%

of all rotor configurations in a two loop structure will electrify all wires, producing

no stop whatsoever. The remaining 4.1% of rotor configurations account for all pos-
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sible stops. Of these stops, we can compute that roughly 92.3% of these stops have

a stop type of 11251. This is a massive proportion of the possible stops. Nearly all

stops have this singular stop type, and herein lies the justification for Turing’s method.

For the sake of argument, suppose all stops were of the type 11251. In this case,

we note two observations:

(1) All stops have a steckering hypothesis producing a normal stop.

(2) The number of steckering hypothesis producing a normal stop for each stop type

is 1.

It would then follow that if we could compute the number of normal stops over all

steckering hypothesis we would get exactly the number of total stops. In such a case

Turing’s calculation of the expected number of normal stops over all steckering hy-

pothesis is the same as the expected number of stops. As the proportion of stops

whose stop type is 11251 increases, Turing’s expected count becomes an increasingly

accurate proxy for the actual number of stops. Given that 92.3% of stops have this

stop type with just two closures, we can expect that Turing’s estimate is very strong.

Moreover, as the number of closures increases, such an estimate improves. This

is because for ⟨σ1, . . . , σk⟩ ≤ S26, the expected size of orbits should increase as k in-

creases. This can be shown heuristically via the Orbit-Stabilizer Theorem [4, p. 180]

which tells us that,

Theorem 4.4 (Orbit-Stabilizer Theorem). For a group G acting on a finite set X,

we have that for x ∈ X

|G · x| =
|G|
|Gx|
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where G · x is the orbit of x and Gx is the stabilizer of x.

We see that the size of the orbit of x is inversely proportional to the size of its stabi-

lizer. As we increase the number of random permutations generating our subgroup,

the constraints required for an element in ⟨σi⟩ to fix x become increasingly unlikely

to be satisfied by independent random generators. Thus, we expect the average size

of Gx to go down, and thus the average size of an orbit increases.

In our context, this implies that stop types tend to have larger components as the

number of closures increases. Consequently, the stop type 11251—corresponding to a

single isolated wire—becomes even more dominant among all stops. Thus, Turing’s

estimate should also improve as the number of generators, that is, the number of

closures, increases.

Simulating Turing’s Model. We will now show to what extent Turing’s model

aligns with ground-truth simulation. For testing during this thesis I created a simu-

lation of both the Bombe and the Enigma machine. However, to ensure my implicit

biases regarding my understanding of the Bombe’s functions do not interfere with my

analysis, simulated figures will be generated by Jean-François Bouchaudy’s simula-

tion of the Bombe [7]. Bouchaudy’s simulation misses a number of stops that were

detected by my simulation since, for poorer menus, it fails to propagate the input sig-

nal sufficiently to reach a steady state. If we increase the propagation in Bouchaudy’s

simulation to 100 loops per position of the Bombe, then my simulation falls in line

with Bouchaudy’s.

We can run Bouchaudy’s simulation with randomly generated menu configurations

and rotor choices, allowing us to compute the average number of stops along with a

margin of error with 95% confidence.
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For instance, running a Monte Carlo simulation of menus with three closures, we

find that there are 30.26 ± 0.57 stops. Turing’s estimate would give us 264−3 or 26

stops which, though outside the margin of error, is still relatively close to the simu-

lated ground-truth.

However, as we remove closures, we can expect that the distribution of stop types

will diverge away from 11251 stops, and Turing’s estimate will stray from the actual

number of stops. This can be seen by running a menu with a single closure which

produces 17003.50 ± 23.83 stops. Turing’s estimate would give us 264−1 or 17576

stops, which falls far outside the desired margin of error of simulation.

Turing’s estimate is a strong heuristic model for the number of stops, but we can

see that even with a large number of closures, his model is not accurate enough to

fit within our desired margin of error. Were the Enigma machine to use more letters,

or the number of closures to be significantly higher, we would expect Turing’s model

to fall within the margin of error; However, in the case of a 26 letter alphabet, with

only a few closures, the number of abnormal stops and the number of stops with

multiple steckering hypotheses producing normal stops are too high for the model to

align with reality. In order to address these problems, we must develop a new model

which does away with some of Turing’s fundamental assumptions.

Section 4.2

The Cycle Type Model

The goal of Turing’s model was to compute the expected number of normal stops over

all steckering hypotheses. In the last section, we justified that for stronger menus,
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this serves as a reasonable estimate for the true number of stops but still failed to

capture the accuracy desired. The goal for this section is to produce a model which

considers all stops, not just normal stops.

Further, in order to justify Turing’s model, we made use of Dixon’s theorem which

showed that for two random permutations the probability they cause a 11251 stop

type is sufficiently high to explain Turing’s model’s convergence to our simulation.

In reality, the permutations formed by the scramblers on the Bombe are not random,

but rather form a complex distribution that must be factored into our model to most

accurately mimic the simulated behavior.

4.2.1. Single Loop

Consider a Bombe running a menu with a single closure. This closure is made up of

some number of scramblers which we denote π1, . . . , πℓ. In the loop, these form one

permutation π = π1 . . . πℓ. The Bombe will stop whenever π fails to connect all wires

in the Bombe. We have previously shown that this occurs whenever π is not a 26, or

equivalently, whenever ⟨π⟩ does not form a transitive subgroup of S26.

We might expect that composing ℓ scramblers should produce a permutation π that

is relatively random in S26. If this were the case, we would expect π to be a 26 cycle

with probability 1
26

and thus we would expect a stop with probability 25
26

. Thus over

263 possible rotor positions, we would expect 262 · 25 = 16900 stops.

Running our simulation with ℓ = 5 we find that there are 16224.77 ± 2.80 stops.

This is significantly different from our prediction. Further, a simulation with ℓ = 4

produces 17576 stops with no margin of error, meaning that every position on every

menu with this structure produces a stop. Clearly, we are not dealing with permuta-
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tions π that are uniformly random.

Parity. To make this clear, consider our case where ℓ = 4. We have 4 permutations

π1, . . . , π4 which make up our loop π. Each permutation πi is a permutation repre-

senting an Enigma machine, meaning that it has a 213 cycle type. This means that

each permutation in our loop is made of 13 disjoint transpositions. In other words,

each permutation πi has an odd parity. Thus, the composition of 4 such permutations

of odd parity must result in a permutation of even parity. Given that any 26 cycle

is necessarily of odd parity, π can never have a cycle type of 261 and thus always

produces a stop. In mathematical terms, we would say the distribution generated

by composing 4 of these Enigma permutations is supported on A26 – the set of even

permutations in S26. In fact, this is true for any loop where ℓ is even.

Similarly, for any odd ℓ, π cannot produce any even parity cycle types, including

our 11251 stop type that was so common in the two cycle case. In this case, the

distribution is supported on odd permutations in S26 \ A26.

The important takeaway is that we cannot just consider the number of closures in a

menu – we must also consider the length of each loop within the closures of a menu.

The length of a closure completely changes which set our distribution is supported

on. Thus, our model will aim to express this by factoring in the additional variable

of closure length.

Simulating the One-Loop Case. The distribution generated by composing per-

mutations (in our case 213 cycles) is a deeply complicated subject that is out of the

scope of this thesis. The relationship between ℓ and the resulting distribution in S26

is so complex and vast in its possible enumeration that our best chance at getting a
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reasonable grasp of this distribution is to simulate it.

The use of a simulation to get the expected number of stops for a single loop of

length ℓ begs the following questions:

(1) If we can simulate the number of expected stops for one closure, why not just

solve the entire problem of computing the expected number of stops via simu-

lation?

While we might be able to run a lengthy Monte Carlo simulation of the Bombe over

many different menu arrangements and shapes, the nature of the Bombe is so com-

plicated that, in practice, there is no convergence to a steady state. Focusing on a

single loop allows us to reach a distribution with a steady state fairly quickly. We

can then rely on this distribution to compute more complicated menu arrangements

which we will discuss in the following section.

In practice, this distribution was reached by running a Monte Carlo simulation. In

each iteration, we initialize ℓ Enigma machines with the pyenigma package. Each

had the same randomized rotor ordering and window setting, then each machine was

given a randomized offset, and the resulting cycle type of their composition was col-

lected. As we collect this distribution, we compute the total variation distance change

between our distributions every 1000 iterations. If the total variation distance change

between our distributions goes below 0.0001 for more than 30 comparisons, we deem

that the distribution has reached a steady state.

Implicit in this simulation is the assumption that permutations produced by the

Bombe are uniformly distributed within each cycle type. This is a reasonable as-

sumption since all permutations for a given cycle type are the same up to relabeling.
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Therefore, we expect no structural differences within the distribution for a fixed type.

Initially, we initialized ℓ permutations chosen randomly from the set of permuta-

tions with cycle type 213 to perform our simulation. However, when we looked at the

two closure case, certain edge cases, such as the case where one closure is of length 2,

strayed from the simulated results. This is likely because the Enigma machines being

represented in the Bombe all have the same initial configuration, only with different

offsets, meaning that the permutations they represent are not purely independent

213 permutations and there is some complicated underlying statistical relationship

between the permutations in a loop.

(2) Would cryptanalysts at the time be able to simulate such a distribution?

While cryptanalysts at the time may not have been able to simulate as many iterations

as we can with modern computers, we do know that such technology existed as

would make this task reasonably achievable at the time. Recall from Section 2.6,

that the Polish Cipher Bureau produced a device called the Cyclometer, whose sole

purpose was to quickly determine the cycle type produced by composing two Enigma

permutations. With simple changes, this could easily be extended to determine cycle

types of arbitrary length loops of Enigma machines. With some random sampling

and tedious cataloging, it is certainly feasible that cryptanalysts of the time could

have computed a distribution close to the one discussed in this section.

One Loop Results. With both these points addressed, we can examine the results

of simulating a single loop of length ℓ. After collecting the cycle type distribution for

each length ℓ over a large Monte Carlo simulation, we can take the observed frequency

of non-261 cycles to get the probability of a stop occurring. Multiplying this by 263

we get our expected number of stops. We then compare this with a small simulation
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run via Bouchaudy’s simulation as our ground-truth.

l Expected Stops Simulated Stops

2 17576.00 17576.00 ± 0.00

3 16246.63 16243.78 ± 6.91

4 17576.00 17576.00 ± 0.00

5 16224.88 16220.57 ± 6.66

6 17576.00 17576.00 ± 0.00

7 16222.69 16224.37 ± 6.63

8 17576.00 17576.00 ± 0.00

9 16223.75 16227.80 ± 6.92

10 17576.00 17576.00 ± 0.00

11 16224.53 16228.59 ± 6.95

12 17576.00 17576.00 ± 0.00

Table 4.1: Single-Loop Bombe Stop Probabilities for Loop Lengths l = 2 to l = 12

It is no surprise that these two values line up with each other, since they are both

just simulated implementations of the Bombe; however, we will see that with just

this small simulation, we are able to accurately estimate the stops for the case of two

loops, without the need for any further simulation.

4.2.2. Two Loops

Consider a Bombe running a menu with two closures. These closures are made up of

two sequences of scramblers we denote π1, . . . , πa and δ1, . . . , δb – forming two loops

with permutations π and δ. The Bombe will stop whenever these permutations fail to

connect all wires in the Bombe. We have previously shown that this occurs whenever
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⟨π, δ⟩ does not form a transitive subgroup of S26.

To get the expected number of stops we need only know the probability that ⟨π, δ⟩

form such a transitive subgroup. If π and δ were uniformly distributed in S26 this

question would be easily answered via Dixon’s theorem; however, we just showed that

these permutations are not evenly distributed and that their distributions are depen-

dent on the loop lengths a and b. In the last section, we gathered the distribution of

cycle types for each length ℓ, so we know the probability that a particular cycle type

1m1 . . . 26m26 occurs for a loop of length ℓ.

Therefore, we will approach this problem by finding the probability that two per-

mutations pulled uniformly from two fixed cycle types form a transitive subgroup of

S26 (or more generally Sn). In the argument that follows, we will construct a new

generalization of Dixon’s Theorem which will allow us to compute this probability

by replacing the original strict requirement of uniformity, with a variable choice of

distribution over cycle types.

We will first simplify our notation to make such a problem easier to state formally.

Rather than denoting a cycle type as 1m1 . . . nmn , we will instead shorten this to the

vector of multiplicities m = (mi)i∈Nn , to mean that this permutation has mi many i

cycles. We will then define tα,β = t(αi),(βi) as the probability that a random permuta-

tion with cycle type α = (αi), and a random permutation with cycle type β = (βi),

form a transitive subgroup of Sn. This collapses our notations of cycle type into a

single variable that will make notation significantly more condensed.

Assuming we have a means to compute these tα,β, we can then introduce our sin-
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gle loop distribution from the last section to compute

P(π has cycle type α) · P(δ has cycle type β) · tα,β.

This is the probability that π has a fixed cycle type α and δ has a fixed cycle type

β, and that these two permutations form a transitive subgroup of Sn. To get the

probability that any two π and δ form a transitive subgroup, we can simply range

over all possible cycle types in Sn to get

P(⟨π, δ⟩ forms a transitive subgroup)

=
∑
α,β

P(π has cycle type α) · P(δ has cycle type β) · tα,β,

and the complement of this probability will be the probability of a stop.

Then we need only to compute these tα,β to solve the two loop case. In order to

do this, we must generalize Dixon’s Theorem to be expressed in terms of cycle types

rather than the size of the ambient space Sn.

Computing tα,β. In order to solve this problem, just as in Dixon’s Theorem, we

will enumerate the various partition types of partitions of Nn.

Let

In :=

{
(υ1, . . . , υk) ∈ Nk

∣∣∣∣∣ 1 ≤ k ≤ n, 1 ≤ υi, υ1 ≤ υ2 ≤ · · · ≤ υk,

k∑
j=1

υj = n

}
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be the set of integer partitions of n. To align with our earlier multiplicity-based

description of orbit, partition, and cycle types, we define a multiplicity function:

m(·) : In → Nn

υ = (υj)j∈Nk
7→ m(υ) = (mυ

i )i∈Nn

where each m
(υ)
i := |{j ∈ Nk | υj = i}|.

We note that {m(υ) | υ ∈ In} is exactly the set of partition types of partitions of

Nn since the set partitions of Nn are surjective on to the integer partitions of n.

We showed in Corollary 1.6 that, for a particular cycle type m = (mi)i∈Nn , the

total number of permutations in Sn with such a cycle type is

n!∏n
i=1 i

mi(mi!)
.

Similarly, for a particular partition type m(υ) = (m
(υ)
j )j∈Nn , the total number of

partitions with partition type m(υ) is

n!∏n
i=1(i!)

(m
(υ)
i )(m

(υ)
i !)

.

We can arrive at this formula in a similar fashion to Corollary 1.6, but we must ac-

count for the fact that the order of each i cycle does not matter since we are treating

them as sets, which gives us a factor of i! in our formula as opposed to i.
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To condense both of these factors, for a vector x = (xi)i∈Nn , we introduce

Y (x) :=
n∏

i=1

(i!)xi · xi!, Z(x) :=
n∏

i=1

ixi · xi!.

Then with this notation, the total number of permutations with cycle type c = (ci)i∈Nn

is

n!

Z(c)

and the total number of partitions with partition type p = (pi)i∈Nn is

n!

Y (p)

We will first illustrate the computation of tα,β by example. Suppose we have two

permutations σ and τ taken from a random distribution of permutations with cycle

type 1231 (with corresponding αis) and 2131 (with corresponding βis) respectively in

S5. We want to find the probability that ⟨σ, τ⟩ is a transitive subgroup of S5.

The subgroup ⟨σ, τ⟩ will form some set of orbits which partitions N5. Our goal is

to find the probability that the orbit we generate is exactly {Nn} . We will do this

by enumerating all partition types which ⟨σ, τ⟩ can form in its orbit structure.

In total, the are

(5!)2

Z(α)Z(β)

possible σ and τ combinations taken from their respective cycle types. This total

must be equal to the sum, over each partition type of N5, of the number of ways that

⟨σ, τ⟩ can produce an orbit structure mirroring that partition type.
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The transitive case contributes exactly

(5!)2

Z(α)Z(β)
· tα,β

pairs σ, τ ∈ S5. Our ultimate goal will be to isolate this factor tα,β to get our desired

probability.

Now consider the case in which ⟨σ, τ⟩ produces a set of orbits, say {A,B} where

|A| = 3 and |B| = 2 – that is, an orbit of type 2131. In order for this to occur, every

cycle of σ and τ must be fully contained in either A or B since a cycle containing

elements from both would necessarily mean that one set is reachable from the other,

thus bridging the two sets into one orbit.

Thus, we must have that the cycle lengths of σ and τ be partitionable into two

groups – one group of cycles whose total length is 3, and the other whose total length

is 2. In our case, this can be achieved by splitting σ into a 3 cycle and 2 cycle, and

splitting τ into a 3 cycle and two 1 cycles. The first group of cycles in S3 can be

denoted by cycle types α(3) = (α
(3)
i ) and β(3) = (β

(3)
i ). The number of pairs of cycles

grouped in this way is

(3!)2

Z(α(3))Z(β(3))
.

The second group of cycles in S2 can be denoted by cycle types α(2) = (α
(2)
i ) and

β(2) = (β
(2)
i ). The number of pairs of partitions grouped in this way is

(2!)2

Z(α(2))Z(β(2))
.

We can then examine restrictions of σ and τ to each subset A and B and compute

the probability that the restricted permutations generate a transitive subgroup on the

169



4.2 The Cycle Type Model Stops

3 element set (that is tα(3),β(3)) and the probability that the restricted permutation

generates a transitive subgroup on the 2 element set (that is tα(2),β(2)). Then the total

number of pairs σ and τ with cycle types α and β which form orbits A and B is

(3!)2

Z(α(3))Z(β(3))
· (2!)2

Z(α(2))Z(β(2))
· tα(3),β(3) · tα(2),β(2) .

If we wanted the total number of ways that σ and τ generate an orbit type of 2131,

we must perform this computation over each possible partitions into sets |A| = 3 and

|B| = 2, of which there are

5!

(2!)(3!)

total partitions. Since our count of σ and τ generating a fixed orbit with that structure

was independent of the specific subsets within that orbit, we can simply multiply by

the above factor to get the total σ and τ pairs generating orbits of the form {A,B}

with |A| = 3 and |B| = 2 as

5!

(2!)(3!)
· (3!)2

Z(α(3))Z(β(3))
· (2!)2

Z(α(2))Z(β(2))
· tα(3),β(3) · tα(2),β(2) .

We note that, for a fixed cycle type x = (xi)i∈Nn , and a partition type υ = {υ1, . . . , υk} ∈

In, the set

Sx,υ :=


(
x
(υj)
i

)
i∈Nn, j=1,...,k

∣∣∣∣∣∣∣
For each j,

∑n
i=1 ix

(υj)
i = υj,

and for each i,
∑k

j=1 x
(υj)
i = xi

 .

is the set of groupings of the cycle type x into k buckets, such that the sum of the

lengths of cycles in the jth bucket is exactly υj. Further, we require that for each

i ∈ N,
∑k

j=1 x
(υj)
i = xi since we want to ensure that the total number of i cycles does

not change between our original cycle type and this new grouping of cycles. This is
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the set of all groupings of the cycle type x into distinct groups of cycles whose lengths

correspond to the cardinalities of sets within a partition of Nn.

In the example we just computed, we have that for υ = (2, 3) (i.e. our orbit has

type 2131), α = (0, 1, 1, 0, 0) (i.e. σ has cycle type 2131) and β = (2, 0, 1, 0, 0) (i.e. τ

has cycle type 1231) , we have that

Sα,υ = {((0, 1, 0, 0, 0), (0, 0, 1, 0, 0))}

and

Sβ,υ = {((2, 0, 0, 0, 0), (0, 0, 1, 0, 0))}.

Note that if either Sα,υ or Sβ,υ were empty, then there is no way to partition both

σ and τ ’s cycle types such that they can form orbits which are compatible with our

partition type υ.

For our particular σ and τ , this is the case when we want to determine the num-

ber of pairs σ and τ generating an orbit of type ρ = (1, 4) ∈ In. For this to occur,

σ and τ must be partitionable into groups of cycles whose total lengths are 4 and 1.

For τ this can be achieved by splitting the cycles into a 3 cycle and 1 cycle (totaling

length 4), and a remaining 1 cycle (totaling length 1) For σ this is impossible to

achieve since it clearly cannot be subdivided such that it has cycles totaling length

1. This is to say, for α = (0, 1, 1, 0, 0)

Sα,ρ = ∅.
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4.2 The Cycle Type Model Stops

We found that for a particular partition type υ, we have

∑
α(υ)∈Sα,υ

∑
β(υ)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj)

total ways in which σ and τ can produce this partition type in its orbits. For

υ = (2, 3) ∈ I5, we find that there are 40 pairs of permutations in S5 with cycle

types 2131 and 1231 respectively that generate orbits with a set containing 3 elements

and a set containing 2 elements.

If we enumerate over all partition types in I5, summing over the ways in which σ

and τ can generate a set of orbits matching that partition type, we will get the total

number of pairs of σ and τ . We have that

(5!)2

Z(α)Z(β)
=

∑
(υ1,...,υk)∈I5

5!

Y (m(υ))

∑
α(υj)∈Sα,υ

∑
β(υj)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj) .

In general, for n ∈ N, and two permutations σ and τ with cycle types α and β

respectively, we have that

(n!)2

Z(α)Z(β)
=

∑
(υ1,...,υk)∈In

n!

Y (m(υ))

∑
α(υj)∈Sα,υ

∑
β(υj)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj) .

To solve for tα,β, we must isolate the partition {Nn}, giving us

(n!)2

Z(α)Z(β)
=

(n!)2

Z(α)Z(β)
· tα,β

+
∑

(υ1,...,υk )̸=(n)

n!

Y (m(υ))

∑
α(υj)∈Sα,υ

∑
β(υj)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj) .

Solving for tα,β we have

172



4.2 The Cycle Type Model Stops

Theorem 4.5. For σ, τ ∈ Sn with cycle types α and β respectively, we have

tα,β = 1 − Z(α)Z(β)

(n!)2

∑
(υ1,...,υk )̸=(n)

n!

Y (m(υ))

∑
α(υj)∈Sα,υ

∑
β(υj)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj) .

This can be solved recursively since each factor t
α(υj),β(υj) is being computed for some

υ ̸= (n). Thus, each υj < n and we can compute the sub-problem for the case of

permutations with cycle types α(υj) and β(υj). Eventually, we will achieve the base

case where n = 1, in which case transitivity is trivial.

In practice, we performed bottom-up recursion to get all possible values tα,β, for

all pairs of cycle types α and β in S1, . . . , S26 respectively. As a sanity check, we

verified that for all cycle types α and β in Sn, that

tn =
∑
α,β

1

Z(α)Z(β)
· tα,β

where n ∈ {1, . . . , 26} and tn is in reference to the original statement of Dixon’s The-

orem 4.3.

To the best of our knowledge, a general formula computing the probability that two

permutations with fixed cycle types α and β generate a transitive subgroup of Sn has

not appeared in academic literature. This contribution serves to extend Dixon’s the-

orem to allow for cases in which σ, τ ∈ Sn are drawn from non-uniform distributions

determined by their cycle types.

Two Loop Results. With these tα,β in hand, we can now compute the probability

that two Enigma permutations π and δ do not form a transitive subgroup – thus

producing a stop. By multiplying by 263 we find the expected number of stops.
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4.2 The Cycle Type Model Stops

What follows are two tables, the first represents the length of each closure in a two

loop menu and the resulting number of expected stops as computed via our tα,β, the

second is the number of stops observed via simulation.

2 3 4 5 6 7 8 9 10 11 12

2 781.69 749.40 750.42 751.24 750.81 750.08 750.78 750.25 750.05 750.24 750.13

3 704.13 705.75 706.53 706.12 705.39 706.07 705.55 705.35 705.56 705.40

4 707.42 708.20 707.79 707.05 707.74 707.21 707.02 707.22 707.07

5 708.98 708.57 707.83 708.51 707.99 707.80 708.00 707.84

6 708.16 707.42 708.11 707.59 707.39 707.59 707.44

7 706.68 707.37 706.85 706.65 706.85 706.70

8 708.05 707.53 707.33 707.54 707.38

9 707.01 706.81 707.02 706.86

10 706.62 706.82 706.67

11 707.02 706.87

12 706.72

Table 4.2: Expected number of stops for two closures each ranging from length
{2, . . . , 12}. Values within the 95% margin of error of table 4.3 are noted in bold.

2 3 4 5 6 7 8 9 10 11 12

2 781.08± 4.99 749.89± 3.58 752.43± 3.43 748.28± 3.46 749.09± 3.42 751.22± 3.47 749.06± 3.42 753.89± 3.58 749.75± 3.56 750.87± 3.49 750.22± 3.57

3 704.02± 1.73 705.49± 1.75 706.84± 1.69 706.50± 1.78 705.45± 1.68 705.42± 1.70 706.25± 1.69 706.54± 1.69 706.08± 1.62 705.98± 1.70

4 707.55± 1.63 707.93± 1.59 707.22± 1.60 706.95± 1.58 707.50± 1.66 708.45± 1.65 707.32± 1.63 707.85± 1.66 709.15± 1.62

5 708.55± 1.65 707.70± 1.61 708.97± 1.61 707.65± 1.65 706.33± 1.59 707.45± 1.66 707.84± 1.68 705.78± 1.57

6 706.69± 1.59 706.74± 1.61 706.55± 1.66 706.21± 1.60 707.41± 1.57 707.38± 1.62 707.28± 1.66

7 707.64± 1.61 708.29± 1.56 707.38± 1.60 708.17± 1.60 705.95± 1.58 708.60± 1.58

8 707.48± 1.63 707.15± 1.59 706.82± 1.66 707.60± 1.61 706.73± 1.61

9 706.91± 1.64 708.12± 1.64 706.56± 1.57 707.28± 1.60

10 708.33± 1.62 707.54± 1.58 707.88± 1.61

11 707.23± 1.63 707.18± 1.62

12 708.22± 1.60

Table 4.3: Simulated number of stops for two closures each ranging from length
{2, . . . , 12}.
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4.2 The Cycle Type Model Stops

4.2.3. Three or More Loops

Our generalization of Dixon’s Theorem can be easily extended to work on an arbitrary

number of permutations with arbitrary cycle types α1, . . . , αℓ where now we define

tα1,...,αℓ
to be the probability that ℓ permutations, pulled uniformly from each of the

cycle types α1, . . . , αℓ, form a transitive subgroup of Sn. By similar derivation to

Theorem 4.5 we find that

tα1,...,αℓ
= 1−

∏ℓ
i=1 Z(αi)

(n!)ℓ

∑
(υ1,...,υk )̸=(n)

n!

Y (m(υ))

∑
α
(υj)

1 ∈Sα1,υ ,...,α
(υj)

ℓ ∈Sαℓ,υ

k∏
j=1

(υj!)
ℓ∏ℓ

i=1 Z(α
(υj)
i )

·t
α
(υj)

1 ,...,α
(υj)

ℓ

.

The problem with calculating the corresponding values of tα1,...,αℓ
is that of computa-

tional complexity.

While the implemented algorithm used many optimizations including caching lookups

and pre-computing partitions, it is still sufficiently slow that the three loop case would

likely require further optimization and more parallelization. Given the scale of com-

binatoric enumeration done to solve this problem, we used python to implement the

algorithm. Certainly a language with less overhead like C or Rust could outpace our

program. This examination of further closures presents an interesting research topic

as it would illustrate whether or not the variance from the one loop estimates results

in a degradation of the model for higher order loops.
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Conclusion

Section 5.1

H-M Factor

This entire discussion of the expected number of stops has ignored the impact of

the diagonal board. Once implemented, the diagonal board drastically reduced the

number of stops for a run of the Bombe.

5.1.1. Turing’s H-M Factor

To describe this effect, Turing introduced an additional term called the H-M factor,

named after Cyril Holland-Martin the Technical Director of the British Tabulating

Company which manufactured the Bombe [37, p. 116].

The H-M factor measures the proportion of normal stops over all steckering hypothe-

ses that are maintained after introducing the diagonal connections. Given that the

number of diagonal wires being used is dictated by the number of letters being con-

sidered in a menu, Turing gave separate H-M factors for menus containing various

numbers of letters. We will denote the H-M factor for a menu with ℓ letters as Hℓ.
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5.1 H-M Factor Conclusion

Distinct Letters in Menu Hℓ

2 0.92

3 0.79

4 0.62

5 0.44

6 0.29

7 0.17

8 0.087

9 0.041

10 0.016

11 0.0060

12 0.0018

13 0.00045

14 0.000095

15 0.000016

16 0.0000023

Figure 5.1: The H-M factor as given by Turing in the Prof’s Book [37, p. 116]

Supposing we had a menu with c closures containing ℓ distinct letters. Turing’s model

tells us that before the introduction of the diagonal board we expect 264−c normal

stops over all steckering hypotheses. Given that Hℓ of these normal stops are maintain

after introducing the diagonal board, Turing’s model estimates that we expect

264−c · Hℓ

total normal stops over all steckering hypotheses when including the diagonal board.
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5.1 H-M Factor Conclusion

The H-M factor has been discussed in academic literature regarding the Bombe, with

researchers like John Wright [41] and Donald W. Davies [14] attempting to improve

the accuracy of the H-M factor through either recursive formulae or explicit enumer-

ation, respectively. Much of this research stems from the fact that Turing provides no

formal justification for his computation of the H-M factor, stating simply that, “the

method of constructing the [H-M factor] table is very tedious and uninteresting” [37,

p. 116]. This understatement sparked a number of attempts to recreate, or improve

upon, this “uninteresting” computation.

For the same reasons discussed in Section 4.1.2, this serves as a fair approximation of

the actual number of stops since with more loops the proportion of stops with type

11251 increases. However, this also means that the calculation of Hℓ suffers from the

inherent issues with Turing’s model without the diagonal board – under-counting due

to abnormal stops, and over-counting stops with multiple steckering hypotheses pro-

ducing normal stops. As an example, Turing calculates that H2 = 0.92 [37, p. 116].

While this may serve as an accurate estimate of the number of normal stops over

all steckering hypotheses, it has scarce relation to the actual number of stops. For

instance, a menu with one closure and only two letters can never produce a stop –

even with the introduction of the diagonal board.

5.1.2. Cycle-Type Based H-M Factor

As with our cycle-type model introduced in the last section, a proper calculation of

Hℓ should not only take into account the single variable ℓ, it should also take into ac-

count an additional variable representing the partition type υ ∈ In of a stop. Further,

such an H-M factor would not give the proportion of normal stops over all stecker-

ing hypotheses that are maintained after the introduction of the diagonal board, it

would give the proportion of all stops which are maintained. We will denote such a
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5.1 H-M Factor Conclusion

hypothetical H-M factor as Hℓ,υ. While Hℓ is Turing’s original scalar correction fac-

tor for menus of length ℓ, our refinement Hℓ,υ introduces partition-aware correction

accounting for the stop type of a stop.

Consider the case of two closures. We showed in the last section that we can compute

the probability of a stop for two loops with cycle structures α and β as.

tα,β = 1 − Z(α)Z(β)

(n!)2

∑
(υ1,...,υk) ̸=(n)

n!

Y (m(υ))

∑
α(υj)∈Sα,υ

∑
β(υj)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj) .

We can modify our version of Dixon’s Theorem to give us the likelihood that two

permutations σ, τ ∈ Sn with cycle type α and β are such that the orbits of ⟨σ, τ⟩ have

a particular partition type υ ∈ In. We denote this probability t
(υ)
α,β and this is given

as

t
(υ)
α,β =

Z(α)Z(β)

(n!)2
n!

Y (m(υ))

∑
α(υj)∈Sα,υ

∑
β(υj)∈Sβ,υ

k∏
j=1

(υj!)
2

Z(α(υj))Z(β(υj))
· t

α(υj),β(υj) .

We note that

tα,β = 1 −
∑
υ ̸=(n)

t
(υ)
α,β.
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5.1 H-M Factor Conclusion

Recall that the probability of a stop for loops of length a and b is

1 −
∑
α,β

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β) · tα,β

= 1 −
∑
α,β

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β) · (1 −
∑
υ ̸=(n)

t
(υ)
α,β)

= 1 −
∑
α,β

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β)

+
∑
α,β

∑
υ ̸=(n)

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β) · t(υ)α,β

=
∑
α,β

∑
υ ̸=(n)

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β) · t(υ)α,β

=
∑
υ ̸=(n)

∑
α,β

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β) · t(υ)α,β

This does not include our hypothetical H-M factor yet. Our factor Hℓ,υ, gives the

proportion of stops of type υ that are maintained after the diagonal board is intro-

duced. Then the total number of expected stops, with two closures with lengths a

and b representing a menu of ℓ distinct letters (ℓ is not necessarily a + b because the

closures may share letters), including the diagonal board is,

∑
υ ̸=(n)

Hℓ,υ

∑
α,β

P(π1 . . . πa has cycle type α) · P(δ1 . . . δb has cycle type β) · t(υ)α,β.

While this provides a framework for understanding such a hypothetical factor Hℓ,υ –

we leave its explicit computation to future work.

In theory, Hℓ,υ could be estimated via simulation; However, this would require that

we are able to efficiently generate menus producing arbitrary orbit structures, many

of which are extremely rare. This would likely result in high variance and poor con-

vergence.
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5.2 Computational Methods Conclusion

We suspect it is possible to perform an exact enumeration to compute Hℓ,υ, likely via

similar methods used to compute tα,β, though we do not yet posses such a procedure.

Developing a means to compute this factor would allow us to model the effective

number of stops with high accuracy across nearly all Bombe configurations — with

or without the diagonal board.

Section 5.2

Computational Methods

Many of the results in this thesis were obtained through simulations and computa-

tional analysis. To support reproducibility and encourage further exploration, this

thesis is accompanied by a companion repository containing all relevant code. This

repository can be found at https://github.com/JonahWeinbaum/building-a-bombe.

This repository includes the scripts used for:

• Simulating the Bombe

• Simulating the Enigma

• Creating and using Zygalski Sheets

• Computing scoring, distance, dummyismus, and repeat sheets for Banburismus

• Capturing cycle distributions in the Bombe

• Computing probabilities tα,β

• Computing the expected number of stops in the Bombe for various menu ar-

rangements
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5.3 Future Work Conclusion

This repository is intended not only to allow readers to experiment with the methods

described herein, but also to serve as a foundation for any future research building

on this work.

Section 5.3

Future Work

This thesis provides several promising directions for exploration. We hope researchers

can improve the estimation of stops in the Bombe by computing a cycle type based

H-M factor as in Section 5.1.2. Further, we hope readers find novel use cases for

the generalized Dixon’s Theorem 4.5. This may serve to deepen investigations of

transitivity in randomly composed permutations or, via reduction of the theorem

statement, provide new results in other fields. In particular, we have begun inves-

tigating a relationship between the probability that a graph pulled from a uniform

distribution over bipartite graphs is connected and the statement of the generalized

Dixon’s Theorem. Finally, through further optimization of the algorithm implement-

ing the generalized Dixon’s Theorem 4.5, researchers will be able to investigate the

ways in which additional closures in a menu affect the number of stops the Bombe is

expected to encounter.

Section 5.4

Conclusion

Throughout this thesis, we have described a battle of mathematics, a cat and mouse

game between Allied cryptanalysts and Axis cryptographers attempting to thwart

each other with a variety of cryptographic vulnerabilities and countermeasures. Our

contribution to this story was to amalgamate and expand on the mathematical rea-

soning underlying this battle. We provide uniquely comprehensive and consistent
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mathematical rigor meant to inform modern audiences about a key period in the

history of computing and cryptography.

At the heart of this thesis is the belief that exploring subjects that may be con-

sidered dated or antiquated can still yield novel and modern insights. Learning about

the problems that necessitated the creation of modern computing and understanding

the thought processes of those who solved those problems can illuminate new per-

spectives and raise new questions in the field of computing. Examining this story

provided us with a unique problem whose solution, in the form of the generalized

Dixon’s Theorem, offers a novel contribution to modern research in the field of ab-

stract algebra. In analyzing and extending Turing’s approach with modern tools, we

not only gain greater understanding of the Bombe itself, but also of the mathematical

structures that underlie its success.

This thesis serves to bridge a gap between historical cryptanalysis and contempo-

rary mathematics. The stories we have examined are not relics of the past, but living

lessons in perseverance and intellect which can shape our understanding of modern

cryptanalysis and mathematics. The mathematical reasonings themselves are not

bound by the time in which they were created; in contemporary reexamination, we

find new avenues for exploration and discovery.
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